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variance and standard deviation; S, sum of weighted, squared residuals (=’’Chisq’’ in
KaleidaGraph fit results, = v2 when wi ¼ 1=r2
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New methods are used to compare seven qPCR analysis methods for their performance in estimating the
quantification cycle (Cq) and amplification efficiency (E) for a large test data set (94 samples for each of 4
dilutions) from a recent study. Precision and linearity are assessed using chi-square (v2), which is the
minimized quantity in least-squares (LS) fitting, equivalent to the variance in unweighted LS, and com-
monly used to define statistical efficiency. All methods yield Cqs that vary strongly in precision with the
starting concentration N0, requiring weighted LS for proper calibration fitting of Cq vs log(N0). Then v2 for
cubic calibration fits compares the inherent precision of the Cqs, while increases in v2 for quadratic and
linear fits show the significance of nonlinearity. Nonlinearity is further manifested in unphysical esti-
mates of E from the same Cq data, results which also challenge a tenet of all qPCR analysis methods —
that E is constant throughout the baseline region. Constant-threshold (Ct) methods underperform the
other methods when the data vary considerably in scale, as these data do.

� 2013 Elsevier Inc. All rights reserved.
The development of real-time quantitative polymerase chain
reaction (qPCR)1 methods has greatly facilitated the quantification
of small amounts of genetic material [1]. The target substance is
amplified through a cyclical heating/cooling process, during which
the amount of the target roughly doubles in early cycles. Unfortu-
nately this early amplification is not directly observable in most pro-
cedures, because the optical fluorescence that is commonly used to
monitor the reaction progress is dominated by background contribu-
tions. Eventually the product fluorescence rises above the back-
ground, in the growth phase; but within a few cycles thereafter
the process begins to saturate in the approach to the final plateau
stage. Typical data are illustrated in Fig. 1, which includes profiles
for four initial concentrations of the target gene, giving curves sim-
ilar in shape but shifted along the cycle axis. Data for different
known starting amounts of the target can be used to determine
the amount of an unknown, through calibration procedures based
on the exponential growth equation,

y ¼ y0Ex; ð1Þ

where E is the amplification efficiency, ranging from E = 1 (no
amplification) to E = 2 (perfect doubling), x is the cycle number,
and y represents the fluorescence signal from the target gene, which
is assumed to be proportional to the number of target molecules N.
Calibration can be accomplished by associating certain cycle loca-
tion indices with fixed amounts of the amplified target material.
For these location benchmarks, which are labeled collectively as
Cq (quantification cycle, see below), Eq. (1) implies:

yq ¼ y0ECq ; ð2Þ

and a plot of Cq vs log(N0) provides the desired calibration relation,
where N0 is the number of target molecules before amplification.

In the two decades that real-time fluorescence monitoring of
the PCR reaction has been in use [2], many procedures have been
described for analyzing the resulting data [3–53]. Some of these
are directed toward a better determination of Cq. Others attempt
to estimate the starting amount y0 through Eq. (2) or variants
thereof. This requires estimation of E, since initial hopes that E
could be taken as 2 for cycles in the baseline region [11] have
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Fig.1. Representative qPCR fluorescence curves, from the 94 � 4 Reps technical
dataset in Ref. [1]. Shown are 5 of the 94 replicates at each of the 4 dilutions,
spanning a starting concentration range of 1000.
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not been borne out [23,38]. The ultimate goal is reliable estimation
of y0 from the data for a single experiment. This goal has proved
elusive and will likely remain so, because there is no direct exper-
imental information about y from the early cycles, where the signal
is buried in the background. Thus any attempt to extrapolate back
to cycle 0 requires assumptions about E in this region. While it may
be possible to bolster such assumptions by accumulated experi-
ence for specific genetic targets, estimating y0 purely from sin-
gle-run data will likely have to retain the assumption of constant
E in this region until methods can be devised to permit its direct
estimation here. Even if E can be determined, most y0 methods also
require reliable estimates of Cq. Accordingly, in this paper we
emphasize the estimation of Cq and its subsequent use in calibra-
tion when data are available for multiple dilutions.

Fig. 2 shows several commonly used Cq benchmarks for ideal-
ized qPCR trajectories. The first- and second-derivative maxima
(FDM and SDM) are the (noninteger) cycle values where those
derivatives reach their maxima. Ct is the cycle where the fluores-
cence reaches a specified threshold level yq above the baseline.
Cy0 is the intersection of a line tangent to the curve at the FDM with
the baseline-subtracted signal level [37]. If the curves are all of the
same shape, shifted along the cycle axis, then all of these markers
are equally valid for calibration [38]; and the optimal choice is that
Fig.2. Synthetic qPCR curves, showing for the first (highest-N0) curve 4 common
location indices used as Cq: Ct = 11.4 (for yq = 0.44, horizontal dashed line),
Cy0 = 13.0, SDM = 14.0, FDM = 16.0. Curves were generated with the logistic
equation, y = b + a/[1 + exp(c(x0 � x))], with baseline b = 1 and amplitude a = 10 for
the first two, with a reduced to 8 for the third. The second and third curves (N0 = 1)
share a common x0 (=FDM) of 22.89, consistent with E = 1.95.
which can be determined most precisely. However, for the purpose
of estimating y0 with Eq. (2), Cq must be taken within the range
where the amplification is thought to follow Eq. (1); this exponen-
tial growth phase is commonly taken to end at the SDM or earlier.
Note that the FDM, SDM, and Cyo are all insensitive to scale changes
of the sort shown for N0 = 1 in Fig. 2. However, Ct is sensitive to
scale, as it is based on an absolute threshold level. For this reason
the data are often scaled to a common plateau level (‘‘normalized’’)
by the instrumental software prior to analysis. With data like those
in Fig. 1, where most curves do not achieve a clear plateau level,
such scaling is difficult to implement without fitting to a functional
form containing a plateau parameter, like the logistic function used
to produce Fig. 2.

A major deficiency in the development of new qPCR analysis
methods has been the lack of suitable data sets on which new
methods can be compared objectively with existing methods. Re-
cently Ruijter et al. [1] have taken a big step toward remedying
that deficiency, in a comprehensive examination of some of the
more popular qPCR analysis methods in medical diagnosis applica-
tions and in more purely mathematical tests. Their study employed
large data sets, analyzed by 9 methods to obtain estimates of Cq

and E, and they have made all these data and results available
for further such work. Here we illustrate how the v2 statistic can
be used to assess precision and linearity in the Cq estimates when
data are available for multiple dilutions of the target gene.
Although some of our results are specific to the data set used for
this illustration, the methods will be straightforwardly applicable
to results for other test data sets when they become available.

v2 is the minimization target in weighted and unweighted
regression, equivalent to the estimated variance for the latter.
Accordingly, it has a simple physical significance, leading to its
use in defining the statistical efficiency: Increases in v2 are equiva-
lent to proportionate increases in the experimental effort (number
of data values) needed to maintain a stated precision. In calibration
fitting, its dependence on the choice of calibration function (cubic,
quadratic, linear) is thus a simple quantitative measure of the
importance of nonlinearity. By contrast, the widely used R (R2)
has no such simple interpretation, though it is mathematically re-
lated to v2 (see below).

In the following sections, we show that the Cq values for the
94 � 4 Reps technical data set from Ref. [1] (Fig. 1) require
weighted least squares for proper calibration analysis — a result
that is likely to be generally applicable to Cq calibration fitting
but appears not to have been noted before. We find that the meth-
ods examined in Ref. [1] vary by more than a factor of 3 in statis-
tical efficiency but typically show efficiency losses <20% from
nonlinearity. We also address the estimation of PCR amplification
efficiency, and we argue that estimates of E from Cq for multiple
N0 do pertain to the early cycles of amplification. The resulting E
estimates challenge a basic assumption of most y0-estimation
methods: that E is constant over the baseline region. Finally, we
identify the source of the poorer performance by some of the qPCR
analysis methods as an experimental flaw that produces variability
in the scale of the data profiles, leading to the aforementioned sys-
tematic errors in Ct when it is taken as Cq.
Materials and methods

Weighted regression

In ordinary least squares (LS), estimates of the parameters in
the fit model function are obtained through procedures that mini-
mize the sum of squared residuals [54–56],

S ¼
X

d2
i ¼

X
½f ða; b; c; . . . ; xiÞ � yi�

2
; ð3Þ



Table 1
Estimated variance of Cq estimates, as a function of initial concentration of the MYCN
gene in the 94 � 4 Reps data.

Method N0

15000 1500 150 15

LinReg 0.0172 0.0295 0.0287 0.1955
FPK 0.0170 0.0325 0.0294 0.1942
Cy0 0.0211 0.0086 0.0215 0.1680
DART 0.0221 0.0303 0.0324 0.1847
FPLM 0.0369 0.0581 0.0428 0.2325
Miner 0.0054 0.0055 0.0178 0.1739
5PSM 0.0084 0.0072 0.0187 0.1917

Mean 0.0183 0.0245 0.0274 0.1915

Fig.3. Variance of Cq as estimated by several qPCR analysis methods for the 94 � 4
dataset, displayed for the four initial concentrations of the target gene.
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where a,b,c,. . . are the adjustable parameters in the model function
f, and the sum runs over the n data points. For example, in a fit to a
quadratic function, the ith residual di ¼ aþ bxi þ cx2

i � yi is calcula-
ble for all data points (xi,yi) after the equations have been solved for
a, b, and c. The assumptions here are that x is error free and the ran-
dom error ri in y is constant. Then the variance r2 in y can be esti-
mated from r2 = S/m, where m is the number of degrees of freedom,
equal to the number of data points minus the number of adjustable
parameters, m = n � p. (This is a simple extension of the familiar
expression for estimating variance for a mean, where p = 1.)

If the yi vary in precision, the correct minimization target is the
sum of weighted squared residuals,

S ¼
X

wid
2
i ; ð4Þ

where wi is the statistical weight for the ith point. [Note that Eq. (3)
is Eq. (4) with all wi = 1.] For fit models that are linear in the adjust-
able parameters (which, e.g., includes polynomials of all orders), the
LS procedure will yield minimum-variance estimates of the parame-
ters if and only if the weights are taken proportional to the inverse of
the data variance [57],

wi / r�2
i : ð5Þ

For example, this is important here in the fitting of Cq data to
achieve a calibration function of log(N0), because the variance of
Cq varies with N0, increasing sharply for high dilutions.

In our calibration fitting, we use the KaleidaGraph program
(Synergy Software), which has an easy-to-use routine that can han-
dle variable weighting and nonlinear response functions, up to 9
adjustable parameters [58]. The user specifies the weighting mode
by clicking a box; then when the fit is called, a data column con-
taining the ri values is selected, and the wi are computed using
Eq. (5), with the proportionality constant = 1. Weighted fitting is
implemented similarly in several other data analysis programs
(e.g., Origin, SigmaPlot, Igor, and the qpcR package, version 1.3-7
[http://cran.r-project.org/web/packages/qpcR/index.html]).

Statistical properties of v2

The following properties of v2 are important in the present
work [59]:

� When the weights are wi ¼ r�2
i , each term in the sum S in Eq.

(4) becomes (di/ri)2, which is about 1 on average. S then
becomes an estimate of v2, with statistical average m.
� v2 is related to R2 through
R2 ¼ 1� S=Sy; ð6Þ
Fig.4. Results from weighted LS calibration fits of Cq for the 94 � 4 dataset, as
estimated using the 5PSM results from Ref. [1], with weights taken as r�2 for this
method from Table 1.
where Sy is defined like S in Eq. (4), but with di ¼ yi � �yw, where
�yw is the weighted average of y (=R wiyi/Rwi). Thus v2 and R2

contain similar information, but v2 is easier to ‘‘read,’’ and free
of certain flaws in R2 [60,61].

� The output of an LS fit includes estimates of the parameter stan-
dard errors (SE). In ad hoc LS fitting, where parameters are
tested in a model in trial-and-error fashion, any parameter
whose SE exceeds its magnitude is statistically insignificant;
removal of such a parameter reduces the fit variance r2 in
unweighted fitting and lowers the reduced v2(v2/m) in weighted
fitting.
� Changes in variance and v2 are equivalent to changes in the

amount of data (n � m) needed to achieve a stated precision —
hence the definition of statistical efficiency in terms of variance.
For example, if r2

2 ¼ 2r2
1 for methods 1 and 2, method 2

requires twice as much data to match method 1 in performance.
Data and analysis methods

All of the data and results from Ref. [1] that are used here were
obtained from the Excel files contained in the supplementary qPCR-
DataMethods.zip file accompanying that paper. For the 94 � 4 rep-
licates dataset, Cq values were provided for the following methods:
FPLM [17], DART [18], PCR-Miner [25], Cy0 [37], 5PSM [40], Lin-
RegPCR [44], and FPK-PCR [52]. The results for one run, 150_28,
were omitted for all methods, leaving 375 Cq values for the calibra-
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Fig.5. v2 values obtained for linear, quadratic, and cubic calibration fits of the Cq

values, as estimated for the 94 � 4 Reps data by the indicated methods. All results
were obtained using weighted LS, with weights computed using the average r2

values in Table 1.

Fig.6. Cq displayed as a function of the signal in the last channel for the 94 � 4 Reps
data. Results of linear LS fits are included for the second concentration. The slopes
are �0.00024, �0.00026, and �0.00002, for LinReg, FPK, and Cy0, respectively. In
the same order, the S values are 0.826, 0.615, and 0.777; these rise to 2.72, 2.99, and
0.79, respectively, when the slope is set = 0 (i.e., when the Cq are simply averaged).
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tion fitting. Additional values were either missing or deemed outli-
ers and omitted for two of the other methods, leaving 373 total
points for Cy0 and 368 for FPLM. The Ref. [1] supplement also sup-
plied single-run E estimates for all of these methods except Cy0.

The logic and implementation of the various analysis algo-
rithms are described in some detail in Ref. [1], with a convenient
summary in Table 1 of that work. Most attempt to estimate E, Cq,
and y0 by fitting selected data ranges to Eqs. (1) and (2) or their
logarithmic versions. Since the baseline signal is always significant,
it, too, must be estimated, and this is done differently in the differ-
ent methods. Of the 7 methods considered here, FPLM, DART,
Miner, and LinReg fall in this ‘‘exponential fitting’’ category, with
different schemes for deciding which cycles are to be considered
baseline and which belong to the growth phase, and different ways
of estimating the baseline (or ‘‘ground phase’’), the growth param-
eters, and Cq. The Cy0 method estimates just Cq, in the manner
illustrated in Fig. 2. The FPK method takes E to be a 6-parameter
bilinear function of y and fits the data for most cycles in the tran-
sition region between baseline and plateau, with the key fit param-
eter being Emax, the E for y � 0; the fit also yields y0 from the
variable-E version of Eq. (1), where Ex is replaced by the product
of all Ei from i = 1 to x. 5PSM (five-parameter sigmoidal) fits all cy-
cles to a 5-parameter log-logistic model having a constant baseline,
takes Cq as the SDM from the fitted curve, and estimates E from the
incremental change in the fit function from x = SDM to x = SDM + 1.

Results and discussion

Calibration testing

Most of the qPCR analysis methods considered by Ruijter et al.
[1] estimate y0 using Eq. (2), which requires that both E and Cq be
estimated first. It can be shown that y0 can never be better than Cq,
even if E is perfectly determined (work in preparation).2 Thus it is
appropriate to examine the reliability with which Cq is estimated in
2 To understand this, consider the logarithmic form of Eq. (1), which is linear in x,
with intercept log(y0) and slope log(E). The range of fitted cycles is usually centered
around x = 15–30, so the intercept is a lengthy extrapolation removed and hence is
subject to variability exceeding that in the fitted log(y) values, from uncertainty in the
slope. Only if the slope is error-free is the scatter in log(y0) comparable to that in the
fitted log(y) values. On the other hand, Cq is in the range of fitted cycles, so is
determined with optimal precision.
the various methods. To this end, we show in Fig. 3 and in Table 1
the calculated variances from the Cq values obtained for each of
the four initial target concentrations. From these results, the FPLM
method is everywhere the poorest (highest variance) and Miner best.
Further, the variance estimates are closely bunched for the lowest N0

but are much more disperse at higher concentrations; and they span
a range of over 30 for some methods, implying that in calibration fit-
ting, the weights should vary by this much.

In the calibration fitting, we examine linear, quadratic, and cu-
bic response functions for Cq vs log(N0). If the Cq values for a given
method are weighted as the reciprocal variances for that method
from Table 1, then the cubic fit should return v2 = m, because the
4 adjustable parameters permit the response function to seek its
optimal value for each of the 4 concentrations. (Higher polynomial
orders would be required to achieve this result with more dilu-
tions.) Then as the order of the calibration polynomial is reduced,
increases in v2 show the importance of nonlinearity. Fig. 4 illus-
trates results for the 5PSM Cq values from Ref. [1]. For the cubic
fit, v2 (Chisq) = 371 (=375 points � 4 parameters). For the qua-
dratic fit there is only slight increase in v2; this reflects the statis-
tical insignificance of d in the cubic fit (i.e., ‘‘Error’’ > |d|). However,
c in the quadratic fit is highly significant, and when the quadratic
term is dropped from the response function, v2 rises by 22% — a
clear marker for the significance of nonlinearity.

The results for each method similarly yield v2 = m for the cubic
fit when weighted by the reciprocal variances for that method. To
permit method comparisons, we use a common set of weights, ta-
ken as the reciprocals of the average variances in Table 1. Fig. 5
summarizes the results from this exercise. The best performer is
Miner, followed by 5PSM and Cy0. The poorest performer is FPLM:
its v2 is �3 times that of Miner, meaning it requires three times as
much data (replicates) to match Miner’s performance. The Cy0 re-
sults are notable for their high linearity, 5PSM for strong nonlinear-
ity, as already noted. The results for LinReg, FPK, DART, and FPLM
seem highly linear if just linear and quadratic response functions
are considered; but this is misleading, because v2 is significantly
smaller for the cubic fits for these methods.

These results cannot be compared quantitatively with those gi-
ven in Ref. [1], because all fitting done there was unweighted (all
wi = 1). If the present fits are repeated unweighted, the results in



Fig.7. Amplification efficiency as a function of average concentration for the 94 � 4
Reps data, from DCq values returned by the indicated methods for adjacent
concentrations.

Fig.8. Efficiency estimates for the LinReg (circles) and Miner (squares) methods, as
obtained from the analyses of individual runs in Ref. [1] (open) and from Fig. 7
(solid). Error bars are 1 r; for the open points these are the SEs obtained from the
values at each N0. Weighted fits of these to a constant (broken lines) yield v2 = 47.5
(LinReg) and 24.8 (Miner); both values easily exceed the 0.1% probability limits for
v2, indicating that the assumption of constancy is not supported.

80 Real-time qPCR data analysis / J. Tellinghuisen, A.-N. Spiess / Anal. Biochem. 449 (2014) 76–82
Fig. 5 are reproduced qualitatively: Miner gives the lowest S and
FPLM the highest (but larger by a factor of only 1.7); and Cy0 is
most linear, 5PSM least (but the increase in S is only 13% for
5PSM, cf 22% for weighted LS). Both with and without weighting,
the increases in S from nonlinearity are much smaller than the
range over methods.

In seeking to explain the noticeably higher v2 values for 4 of the
methods in Fig. 5, we note that several of these take Cq as Ct for an
absolute threshold level. When the data vary in scale, an absolute
threshold yq will lead to larger Ct for curves with lower plateau lev-
els, and smaller Ct for higher plateaus (see Fig. 2). This explanation
is supported by examination of the dependence of Cq on plateau
signal level (Fig. 6). We see that the systematic dependence on
y45 accounts for almost 80% of the total S for FPK but less than
2% for Cy0, which along with 5PSM and Miner, defines Cq to be
scale-insensitive (e.g., the SDM in 5PSM).

Amplification efficiency

We can estimate E from the slopes in calibration data, using a
well-known expression obtainable from Eq. (2) by noting that yq

is constant by definition:3

logðy0;2=y0;1Þ ¼ ðCq;1 � Cq;2ÞlogðEÞ � DCqlogðEÞ; ð7Þ

where the y0’s now represent the known relative values for any two
concentrations, and E the average efficiency over that range. Fig. 7
shows results for E obtained using the Cq values for adjacent con-
centrations. The middle estimates exceed 2.00 by amounts that
are statistically significant at the 2r level for 4 of the 7 methods;
these are the same methods that show significant increases in v2

in Fig. 5 on going from the cubic to the quadratic fit, so these
unphysical efficiency values can be seen as another manifestation
of nonlinearity.

Six of the methods considered in Ref. [1] yielded E estimates for
individual runs. In order of increasing E, the averages and SEs (in
parentheses, in terms of final digits) of these estimates over all
runs are: 1.7987(24) (5PSM), 1.8687(32) (LinReg), 1.9085(24)
(DART), 1.9836(20) (FPLM), 1.9918(37) (Miner), and 2.3111(19)
(Emax, FPK). In Fig. 8, values obtained for two of the methods at
each concentration are compared with their counterparts from
Fig. 7. The agreement is not good. Furthermore, the N0-dependence
is much greater than the uncertainties in the individual estimates,
and their averaging is thus not supported statistically, as is seen in
the large v2 values obtained for the weighted averages. [Note that
when comparing values for consistency, the appropriate dispersion
index is the SE, and thus only FPLM and Miner are marginally con-
sistent. The sampling distributions shown in Fig. 6D of Ref. [1] are
properly interpreted as applying for single determinations and
thus appear to show much greater mutual consistency.]

Since the DCq-based estimates of E mostly differ significantly
from the single-curve estimates, we may ask about differences in
their physical meaning. The single-curve estimates are intended
to represent just the earliest cycles in the growth phase, where E
is supposed to be at the same constant level as throughout the
baseline region, before its decline to 1 in the plateau region. (Some
methods, like LRE [39] and FPK, assume that E is already declining
for the analyzed data, but still assume constancy for the baseline
region.) On the other hand, the DCq-based estimates arguably ap-
ply for the earliest cycles, through the following logic: If we as-
sume that the qPCR data for two different starting concentrations
share a common course after the more dilute sample has achieved
3 yq is not exactly constant for the FDM, SDM, and Cy0 if the curve shape varies
with N0.
the N0 of its counterpart, then DCq for these two is the number of
cycles needed for this initial amplification in the more dilute sam-
ple; and the Eq. (7)-based E is the average efficiency for the first
DCq cycles in this sample.

Which estimates are ‘‘correct’’? The DCq-based estimates are a
byproduct of, hence fully consistent with, calibration. To the extent
that the single-curve estimates differ from these, they must pro-
duce bias in the estimation of y0.4 Is E constant throughout the base-
line region? From the results in Fig. 7, no. The consensus estimate of
efficiency in the early cycles of the most dilute samples is smaller
than in later cycles — a result that has been noted before [62]. The
single-curve methods may be correctly estimating E in the growth
onset regions, and these values may in fact vary with initial N0 (as
suggested in Fig. 8). However, none of the methods agree overall
with the Cq-based estimates better than Miner, and only Miner and
FPLM give single-run Es that are roughly consistent with these.
4 For example, if the true E = 1.97 and it is estimated as 1.87 from single-curve
analysis, then for Cq = 25, y0 will be overestimated by a factor of (1.97/1.87)25 = 3.7.



Fig.9. PCR fluorescence data for run F1.1 in the Reps dataset from Ref. [41], with
quadratic functions fitted to the baseline and plateau regions. Insets show these
regions at expanded scale and include the LS residuals (calculated � observed,
ordinate scales to right) for the fitted points (first 9 and last 21). The estimated data
variances in the two regions are 1.20 � 10�5 (baseline) and 8.9 � 10�4 (plateau).

Fig.10. Signal in the first and last channels in the 94 � 4 Reps data, displayed as a
function of sample number.
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Conclusion

We have re-examined results from a recent study of qPCR anal-
ysis methods [1], using the v2 statistic to judge precision and lin-
earity in the Cq estimates for multiple dilutions of the target
gene. Because the precision of estimation of Cq depends strongly
on starting concentration (N0), weighted least squares is required
for optimal results in the calibration fitting; this need appears
not to have been recognized in previous work. We find better per-
formance by three methods — PCR-Miner [25], Cy0 [37], and 5PSM
[40] — manifested as better precision of estimation of the Cq values,
better linearity in their subsequent use in calibration, and better
estimation of E from their N0 dependence. The better methods
are insensitive to scale changes in the data, and that helps them
outperform the constant-threshold methods on these test data,
where significant scale variability is evident.

For the six analysis methods that gave estimates of E from sin-
gle-run data, the results for the 94 � 4 Reps data are largely mutu-
ally inconsistent, and for only two methods — PCR-Miner and FPLM
— are the Es close to those obtained from the calibration fitting.
The premise behind these efforts — that there exists a region early
in the growth phase where E is constant and equal to that in the
baseline region — has been challenged in a number of studies
[38,42,52]. Our estimates of E from the concentration dependence
of Cq show that E is significantly smaller in the earliest cycles for
the most dilute samples than in subsequent cycles having larger
N. Thus, even if single-curve analysis can correctly estimate E at
the start of the growth phase, there may be no guarantee that
the same value will apply for all earlier cycles.

Our finding of poorer performance for constant-threshold
methods must hold generally when the data vary in scale, and
is the reason some instrumental software packages attempt to re-
scale the data to constant amplitude, as noted earlier. Some of
the other results found here apply strictly only for the MYCN
gene and the specific amplification chemistry and procedures
used to produce the test data. For a full and fair assessment of
analysis methods, there is a real need for further such compari-
son studies on other large data sets, to which end an agreed-
upon collection of test data is highly desirable. Then proposed
new methods can be tested against existing methods with a com-
mon basis for comparison. The lack of such reference data has
meant that every newly proposed qPCR analysis method has
seemed to be superior to all pre-existing methods, leaving poten-
tial users inadequately informed about the real capabilities of the
methods.

We know of no other multiple-dilution test data sets as large
as the 94 � 4 Reps data used here, but there are a number of
smaller replicate data sets that might be similarly tested and
are readily available from the web site of one of us (www.dr-spi-
ess.de). These include 20 replicates at each of 6 dilutions from
Rutledge and Cote [20], 12 � 6 from Sisti et al. [48], and 18 � 5
from Lievens et al. [52]. In preliminary work on these with the
5PSM method, we have encountered a problem not important
for the data used in the present study. As Fig. 9 shows, the data
noise can vary strongly from baseline to plateau. Such heterosced-
asticity appears to be a general property of most qPCR data and it
means that in methods that fit data over this full range, weighted
LS is required for optimal analysis, requiring, e.g., downweighting
by a factor of 75 in the plateau region for the data in Fig. 9. Meth-
ods that fit data in just the early growth region should be less af-
fected, but those that transform the data logarithmically may
perform less well for lack of attention to weighting resulting from
this transformation [63].

Since variation in the scale of the profiles can lead to reduced
precision in the estimation of Cq for the Ct methods (Fig. 6), it is rel-
evant to look for the source of such variation. For the 94 � 4 Reps
data, we find that the signal amplitude depends upon the sample
number for all cycles, including those in the baseline region
(Fig. 10). Further, there is a periodic variation superimposed upon
the overall trend. These observations imply that the problem orig-
inates in the charging of the wells with the target, reagents, and
dyes, which is done with a robotic pipetting system. When such ef-
fects are present in studies having far fewer replications, they will
be completely unrecognizable while compromising the quality of
the results. Accordingly, this problem warrants attention, and
especially so with new qPCR instrumentation coming online with
replication capabilities exceeding those of the current generation
of instruments by an order of magnitude or more.

Finally, we acknowledge again that the goal of single-curve
analysis methods is estimation of y0, and performance in estimat-
ing Cq and E may not translate into similar rankings for estimating
y0. Further, some methods (like LRE, FPK, MAK2 [47], and Carr-
Moore [53]) do not need Cq to estimate y0. In fact this statement
also holds for most methods based on Eqs. (1) and (2), for the fol-
lowing reason: If the point (Cq,yq) lies on the fitted curve, then the
value of y0 calculated from Eq. (2) must be identically that obtained
from the fit of the data to Eq. (1). In preliminary work on y0 estima-
tion, we find that, as explained in note 2, no methods for estimat-
ing y0 can match Cq-based calibration unless all uncertainty and
bias in E is removed — a limitation that should be borne in mind
when using these methods.

http://www.dr-spiess.de
http://www.dr-spiess.de
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