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a b s t r a c t

RNA transcripts such as mRNA or microRNA are frequently used as biomarkers to determine disease state
or response to therapy. Reverse transcription (RT) in combination with quantitative PCR (qPCR) has
become the method of choice to quantify small amounts of such RNA molecules. In parallel with the
democratization of RT-qPCR and its increasing use in biomedical research or biomarker discovery, we
witnessed a growth in the number of gene expression data analysis methods. Most of these methods
are based on the principle that the position of the amplification curve with respect to the cycle-axis is
a measure for the initial target quantity: the later the curve, the lower the target quantity. However, most
methods differ in the mathematical algorithms used to determine this position, as well as in the way the
efficiency of the PCR reaction (the fold increase of product per cycle) is determined and applied in the
calculations. Moreover, there is dispute about whether the PCR efficiency is constant or continuously
decreasing. Together this has lead to the development of different methods to analyze amplification
curves. In published comparisons of these methods, available algorithms were typically applied in a
restricted or outdated way, which does not do them justice. Therefore, we aimed at development of a
framework for robust and unbiased assessment of curve analysis performance whereby various publicly
available curve analysis methods were thoroughly compared using a previously published large clinical
data set (Vermeulen et al., 2009) [11]. The original developers of these methods applied their algorithms
and are co-author on this study. We assessed the curve analysis methods’ impact on transcriptional bio-
marker identification in terms of expression level, statistical significance, and patient-classification accu-
racy. The concentration series per gene, together with data sets from unpublished technical performance
experiments, were analyzed in order to assess the algorithms’ precision, bias, and resolution. While large
differences exist between methods when considering the technical performance experiments, most
methods perform relatively well on the biomarker data. The data and the analysis results per method
are made available to serve as benchmark for further development and evaluation of qPCR curve analysis
methods (http://qPCRDataMethods.hfrc.nl).
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1. Introduction

1.1. Aim of the current study

Fluorescent labeling of DNA enables real-time monitoring of the
accumulation of the amount of reaction product in a PCR reaction
[2]. The observed amplification data can thus be used to determine
the initial target quantity which makes quantitative PCR (qPCR)
currently the method of choice to determine concentrations of
low amounts of DNA [3,4]. The combination of qPCR with reverse
transcription (RT) enables the quantification of minute amounts
of RNA species and makes RT-qPCR a suitable method for discovery
and validation of expressed biomarkers.

An ideal biomarker should be sensitive and specific, should dif-
ferentiate between disease states, and should be easy and accu-
rately detectable [5]. The recent advent of miRNA-based
biomarker studies (e.g. [6–8] shows that this RNA species fulfills
these criteria. Also mRNAs have been proposed as biomarkers for
diseases ranging from depression [9] to cancer such as prostate
carcinoma [10] or neuroblastoma [11]; RT-qPCR was also used to
address soil contamination [12] and viral infections in cattle [13].
Currently, most RT-qPCR based transcriptional biomarker research
employs the comparative-Cq method [14] to determine gene
expression ratios without considering the actual amplification effi-
ciency and without relying on multiple reference genes for accu-
rate normalization.

The evolution of methods for analysis of qPCR data, that over
the last decade has paralleled the evolution of RT-qPCR in the lab-
oratory, thus seems to be neglected. However, when PCR efficiency
correction was employed, the observed discriminative genes, as
well as their fold-change in expression, were shown to differ con-
siderably [10]. This illustrates the need to address and compare the
performance of the available qPCR curve analysis methods in terms
of precision, bias and resolution.

In published comparisons the different analysis methods are of-
ten applied on a limited number of samples or assays and in a re-
stricted or outdated way that either does not do them justice or
that may result in over-fitting of the data. We therefore embarked
upon a combined effort to compare published data analysis meth-
ods that have a publicly available user interface. The original devel-
opers of these algorithms or interfaces are co-author on this paper
and each method was applied in the currently proposed and imple-
mented way to a large and published clinical data set, used for im-
proved outcome prediction of children with neuroblastoma [11].
1.2. Background

Basic PCR kinetics are described by Nn ¼ N0En, in which N0 and
Nn, are the starting concentration of the target DNA and the con-
centration after n cycles, respectively. N0 and Nn are linearly related
to Fn, the fluorescent signal after n cycles and F0, the fluorescence
that would be associated with the starting amount of the target
DNA [15]. Note that the linear relation between target concentra-
tion and fluorescence may differ between targets and may not hold
in the plateau phase of the PCR reaction; most efficiency-based
qPCR data analysis assume this relation to be proportional in the
exponential phase of the PCR reaction. In the basic equation, the
parameter E, the base of the exponential amplification function,
is the PCR efficiency defined as the fold increase of the amount
of DNA per cycle. Thus defined, PCR efficiency ranges from 1 (no
amplification) to 2 (complete doubling). Note that in the MIQE
guidelines, the PCR efficiency is defined as the increase of product
per cycle as fraction of the amount present at the start of the cycle
and then ranges from 0 to 1 [1]. In this paper we will use the for-
mer definition of E and thus deviate from MIQE.
The more copies of input DNA in the PCR reaction, the fewer cy-
cles of amplification are needed to reach a specific amount of prod-
uct [16]. This principle forms the basis of the original qPCR data
analysis, which still forms the starting point of most current day
qPCR analysis methods. The approach is to set a quantification
fluorescence threshold (Fq) and to determine the number of cycles
required to reach that threshold (the quantification cycle, Cq).

A series of samples with decreasing but known amounts of the
target-of-interest can be used to construct a (mainly linear) cali-
bration line (by plotting the observed Cq against the logarithm of
the known nucleic acid inputs) and the target quantity of unknown
samples can be derived from this calibration plot [15,17]. This so-
called ‘absolute quantification’ method requires such a calibration
plot to be constructed for every target that is measured [18]. More-
over, it assumes the PCR efficiency to be equal in the calibration
samples and the biological samples. To correct for differences in
sample composition and the yield of the reverse transcriptase reac-
tion [19] a ‘relative quantification’ approach is required, using,
preferably multiple, stably expressed reference genes [14,20,21].

When an estimate of the PCR efficiency is available, the set Fq

threshold and observed Cq values can be used to calculate F0, the
fluorescence associated with the target quantity, using the equa-
tion F0 ¼ Fq=Ecq . In the first reported qPCR quantification model,
the PCR efficiency was assumed to be 2 and identical for all mea-
sured targets. However, it was shown that this assumption may
lead to bias in the results [20,22,23]. The recommendation to
implement PCR efficiency values per target resulted in ‘effi-
ciency-corrected relative quantification’ [20,24].

Depending on the adopted model, amplification efficiency is
considered to be constant or continuously decreasing per cycle.
In the ‘constant efficiency’ model, the efficiency only starts to de-
crease after the exponential phase when competition between pri-
mer and amplicon, and/or decreasing concentrations of reagents or
fluorochrome, lead to a decrease in reaction efficiency or reduced
fluorescence increase per cycle [25,26]. In the ‘continuously
decreasing efficiency’ model, limiting reaction conditions are con-
sidered to influence the reaction efficiency from the first cycle on-
ward [27–30].

In the beginning of this millennium several approaches to
determine the parameters Fq, Cq and E, needed for the calculation
of (relative) target quantities, were published. Most of these meth-
ods are based on a constant efficiency in the exponential phase but
differ in the way they determine the fluorescence baseline, expo-
nential phase, efficiency, quantification threshold and Cq. To satisfy
the notion that the PCR efficiency might differ between targets and
reactions [19], several schemes were developed to derive an effi-
ciency estimate from each individual amplification curve. These
approaches focused on the exponential phase of amplification
and involved using all points [31–33], a set of points [34,35] or 2
points [36,37]. The estimation of the fluorescence baseline is a cru-
cial step in qPCR data analysis and is therefore a recurring theme in
qPCR data analysis methods [32,33,38]. All methods compared in
this study include a baseline estimation. The calculation of the
SDM identifies the cycle with the steepest increase in fluorescence
and thus the end of the exponential phase [32,39]. In data analysis
based on sigmoidal curves, the Fq value associated with this SDM
value determines the observed or modeled Cq [33,40]. To accom-
modate the fact that PCR amplification curves are not symmetrical,
the sigmoidal curve was extended to 5-parameters [37] or changed
into a logistic model [32]. To correct the Cq value for differences in
amplification efficiency between biological samples and the stan-
dard curve the Cy0 value was introduced [41]. Despite this pleth-
ora of analysis approaches and the confusion in literature, the
similarities between these methods are striking as they are all
based on the basic kinetics equation and all calculate a target
quantity using an efficiency value and a Cq value (Table 1). A real



Table 1
Estimation of parameters in the analysis of qPCR amplification curves. E: Efficiency, Cq: Quantification cycle, F0: Initial fluorescence at cycle 0, Fq: Fluorescence at Cq, Fb: baseline fluorescence.

Parameters

Name Class Fitting Fb E Cq Fq F0

CAmpER: DART [34] Partial
curve

Linear 3-parameter saturation function
fitted to F2–10, subtraction from Fn

Calculation of ‘midpoint’ region FM,
linear regression of 10-fold region
around FM. E is slope of regression.
(uses E per reaction)

Calculated from intersection of the
linear function derived from the
regression and Fq

Multiple of r(F1–

10), depends on
PCR system

F0 = Fq/ECq

CAmpER: FPLM [32] Partial
curve

Nonlinear,
linear

3-parameter saturation function
fitted to F2–10, subtraction from Fn

Fitting of three-parameter exponential
model to Cq range with Fb as baseline
parameter, E is regressed
parameter.(uses E per reaction)

Calculated from intersection of
three-parameter exponential
function and Fq

Multiple of r(F1–

10), depends on
PCR system

F0 = Fq/ECq

MAK2/MAK2+slope [29] Partial
curve

Nonlinear,
recursive

Evaluated as a parameter in the
recursive model

Evaluated as a
parameter in the
recursive model

FPK-PCR [30] Complete
curve

Nonlinear,
linear

Linear regression function fitted
from F3 to Fn, where n = cycle
number with 5% fluorescence of
Fmax Subtraction from Fn

Cycle-dependent En obtained from
fitting a six-parameter bilinear model
to double-logarithmized Fn (uses E per
reaction)

Calculated from fitting
the cumulative product
of all En to Fn

LinRegPCR [38] Partial
curve

Linear Iteratively evaluated to deliver a
straight line of data points
downward from SDM; subtracted
from Fn

Linear regression fitted on logarithm of
F in a window of 4 cycles, that delivers
the least r(E) between reactions per
amplicon (uses Emean)

One cycle below the top border of
the best window of cycles

Fluorescence at Cq F0 = Fq/ECq

LRE qPCR [42]
LRE-Emax/LRE-E100

Partial
curve

Linear Average of F3–8, subtraction from Fn,
assumes constant baseline
fluorescence

Linear regression of En versus Fn fitted
to the largest possible window, defined
by the difference to averaged F0 values.
E is intercept of the regression (Emax).
Alternatively, to reduce variance Emax
is fixed to 100%

F0 ¼ Fmax

1þ Fmax
FC
�1

� �
Emaxþ1ð ÞC

Cy0 [41] Complete
curve

Nonlinear,
linear

Linear regression of Cy0 values from
dilution setup

Intersection of the tangent to the
first derivative maximum of a five-
parameter logistic model with the
abscissa (Cy0)

F0 = 1/ECy0

5PSM [37] Complete
curve

Nonlinear Intersection of five-parameter
logistic model, subtraction from Fn

Efficiency at Cq (uses E per reaction) Second derivative maximum of the
fitted five-parameter logistic model

Fluorescence at Cq F0 = Fq/ECq

PCR-Miner [33] Partial
curve

Nonlinear Weighted fitting of three-
parameter exponential model from
Cq range with Fb is regressed
baseline parameter (y0)

Weighted fitting of three-parameter
exponential model to Cq range with E as
regressed parameter (uses Emean)

Cq range: cycle range from Cnoise to
the SDM of the four-parameter
logistic model; Cnoise is obtained as
the standard error level of the
baseline parameter (y0) of the
logistic model

The mean of y0
and SDM of the
logistic model

F0 = 1/ECq
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difference in approach lies between those ‘constant efficiency’
algorithms [32–34,37,38,41] and the methods that are based on
continuously decreasing efficiency values [29,30,42] (Table 1 and
Supplemental Description of methods).

The aim of the current comparison of qPCR curve analysis meth-
ods, carried out by the original authors of the published methods,
is to test their precision, bias and resolution, and their reliability in
transcriptional biomarker identification. This comparison is based
on a large number of raw mRNA expression data sets containing
fluorescence readings for each cycle. The data comes from two dif-
ferent real-time PCR instruments and 3 different PCR master mixes
(see Section 2). The heterogeneity of the data sets avoids favoring
algorithms that may work optimally on a given instrument and re-
agent combination, but underperform on other combinations. As
such this study can function as a first benchmark for future devel-
opment and evaluation of qPCR curve analysis methods.
2. Material and methods

2.1. qPCR datasets

2.1.1. Biomarker gene expression profiling in tumor biopsies
Data comes from a previously published study in which a 59-

mRNA gene expression signature was developed and validated
for improved outcome prediction of children with neuroblastoma
[11]. In short, 59 biomarkers and 5 reference genes were measured
in 8 ll reactions in a 384-well plate using the LightCycler480 SYBR
Green Master (Roche) in a sample maximization experiment de-
sign [24]. The 59 genes were carefully selected as being previously
reported as prognostic genes in neuroblastoma in atleast 2 inde-
pendent studies. Each plate contained 366 cDNA samples (n = 1)
from primary tumor biopsies, a 5-point 10-fold serial dilution ser-
ies based on an external oligonucleotide standard (n = 3, from
150,000 to 15 copies), and a no template control (NTC, n = 3).
Raw (baseline uncorrected) fluorescent data and Cq values were ex-
ported from the LightCycler480 instrument software (using the
maximum of the second derivative algorithm). This data set will
be referred to as ‘biomarker dataset’ in this paper.
2.1.2. Four-point 10-fold dilution series
An external oligonucleotide standard was synthesized for the

human MYCN gene. The sequence of each standard consists of
the forward primer sequence of that particular gene, a stuffer se-
quence (sequence consisting of an ACTG repeat) in the middle
and the reverse complement sequence of the reverse primer of that
gene at the end (total length of 55 nucleotides; forward primer
GCGAGCTGATCCTCAAACG; reverse primer CGCCTCGCTCTTTAT
CTTCTTC; template GCGAGCTGATCCTCAAACGactgactgactgacGAA-
GAAGATAAAGAGCGAGGCG). No secondary structures in the tem-
plate sequence were found upon UNAFold analysis [43]. The
external oligonucleotide standard was PAGE purified and blocked
at its 30-end with a phosphate group to avoid participation in the
PCR amplification process (Biolegio, the Netherlands). The manu-
facturer’s supplied concentration was confirmed using the Nano-
drop 1000 Spectrophotometer (Thermo Scientific). A dilution
series consisting of four 10-fold serial dilution points, starting from
15,000 molecules down to 15 molecules was created using 10 ng/
ll yeast tRNA as carrier (Roche). The same dilution of the carrier
was used to create the NTC sample. qPCR was done on a CFX 384
instrument (Bio-Rad). A 384-well qPCR plate was prepared using
a 96-well head pipetting robot (Tecan Freedom Evo 150). qPCR
amplifications were performed in 8 ll containing 4 ll iQ SYBR
Green Supermix (Bio-Rad), 0.4 ll forward and 0.4 ll reverse primer
(5 lM each), 0.2 ll nuclease-free water and 3 ll of standard oligo-
nucleotide. A total of 94 replicated reactions were dispensed for
each of 4 dilution points. In addition, the NTC reaction was ana-
lyzed in 8 replicates. All reactions were performed in 384-well
plates (Hard-Shell 384-well microplates and Microseal B clear
using adhesive seals (Bio-Rad). The cycling conditions were com-
prised of 3 min polymerase activation at 95 �C and 45 cycles of
15 s at 95 �C and 30 s at 60 �C followed by a dissociation curve
analysis from 60 to 95 �C. This dataset will be referred to as ‘94-
replicates-4-dilutions set’.

2.1.3. Replicates for assessment of precision
A dilution consisting of 15,000 molecules of the MYCN oligonu-

cleotide was created in 10 ng/ll yeast tRNA carrier. qPCR amplifi-
cations were performed in 380 replicated 8 ll reactions and
quadruplicated reactions of the NTC sample were performed on
the same 384-well plate. qPCR reaction set-up and thermal condi-
tions were identical as mentioned above. This dataset will be re-
ferred to as ‘380-replicates set’.

2.1.4. Competimer primers for PCR efficiency modulation
Forward and reverse primers were designed to amplify human

AluSx repeats (forward TGGTGAAACCCCGTCTCTACTAA, reverse
CCTCAGCCTCCCGAGTAGCT). Competitive primers were synthe-
sized on basis of identical sequence and blocked by amination at
the 30 end to allow annealing, but avoid elongation during the
PCR process. A six-point 4-fold serial dilution series made from ref-
erence human genomic DNA (Roche), starting from 64 ng/ll down
to 0.0625 ng/ll, was created in 10 ng/ll yeast tRNA as carrier. The
same dilution of the carrier was used to create a NTC sample. qPCR
amplifications were performed in 7.5 ll total reaction volume con-
taining 3.75 ll 2� custom made qPCR SYBR green I Mastermix
(Eurogentec), 0.375 ll forward primer (5 lM), 0.375 ll reverse pri-
mer (5 lM), 1 ll of a mixture of nuclease-free water and equal
amounts of both forward and reverse competitive (aminated) prim-
ers, and 2 ll diluted standard. A total of 7 ‘competitive’ mixes were
prepared for each dilution point, containing 0%, 5%, 10%, 20%, 30%,
40%, and 50% (of the total amount of primer) competitive (aminat-
ed) forward and reverse primers. Each reaction was run in triplicate.
The qPCR cycling was performed on the LightCycler480 (Roche)
using white LightCycler480 384-multiwell plates with Light-
Cycler480 sealing foils (Roche). The cycling conditions were com-
prised of 10 min polymerase activation at 95 �C, and 45 cycles of
15 s at 95 �C, 30 s at 60 �C, followed by a dissociation curve analysis
from 60 to 95 �C. This dataset will be referred to as ‘competimer set’.

2.2. qPCR curve analysis methods

Detailed descriptions of the included curve analysis methods
can be found in the Supplemental Description of methods. In the
text these methods will be referred to with their preferred abbre-
viations FPLM, 5PSM, DART, PCR-Miner, LinRegPCR, Cy0, MAK2,
FPK-PCR, and LRE-qPCR. FPLM [32] and DART [34] are included
with their implementation in CAmpER. For LRE-qPCR two imple-
mentations were compared, LRE-Emax and LRE-E100 with an esti-
mated maximum efficiency (Emax) and an Emax set to 100%,
respectively. In the descriptions of the curve analysis algorithms
the mathematical symbols in the equations are defined per analy-
sis method. Therefore, the same parameter can be represented by a
different symbol in different methods and vice versa. The original
symbols were preserved to enable the reader to easily refer to
the original papers for each method. The way in which the main
analysis parameters are estimated by the different curve analysis
methods is summarized in Table 1.

The results of all curve analysis methods were compared to the
results obtained with the original Cq values, exported from the
LightCycler480 software, and the PCR efficiency value derived from
the standard curve based on these Cq values (method: Standard-Cq).



log(input)
-4 -3 -2 -1 0

lo
g(

F 0
)

-4

-3

-2

-1

0

Varwithin
(0.004)

Ratio
(4670)

fold
detectable

(1.87)

linearity (1.24)

fold reduced
(0.99)

Efficiency 1.86

-4 -3 -2 -1 0

-4

-3

-2

-1

0

lo
g(

F 0
)

Ratio
(6585)

Varwithin
(0.034)

fold
detectable

(11.5)

linearity (2.82)

fold added
(9.5)

Efficiency 2.04

log(input)

Fig. 1. Performance indicators. The calculation of performance indicators based on the analysis of a concentration series in illustrated. The graphs show a representative gene
(PRKACB) analyzed with FPK-PCR (left) and LinRegPCR (right). Input data (x-axis) and observed F0 values (y-axis) are both scaled to set the mean of the highest input and
output to 1 and are log-transformed (base10).
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2.3. Comparison of curve analysis results

2.3.1. Biomarker data analysis
In a first step, the number of missing data points resulting from

the different curve analysis methods was counted. This analysis
was done on the entire dataset including the 59 genes of interest
as well as the 5 reference genes.

In a second step, the target quantities determined by the 9
methods (excluding LRE-E100) were log (base 10) transformed
and normalized by subtraction of the arithmetic mean of the log-
transformed expression values of 4 reference genes (HPRT1, HMBS,
SDHA and UBC; AluSq values could not be determined by some
methods and were therefore not used), previously determined to
be stably expressed in neuroblastoma [21]. As a reference, the ori-
ginal Cq values (generated by the LightCycler480 software) were
included in the study. After linearization of these Cq values
(2�Cq), the same log-transformation and normalization procedure
was applied to this reference set. For classification performance
assessment, missing values were imputed by the lowest expression
value of the gene across all samples minus 1 log-unit.

As third step, we investigated the impact of the curve analysis
method on the significance of differential expression of marker
genes between two risk groups of cancer patients (high-risk versus
non-high-risk, according to previously established criteria [44].
The high-risk subgroup comprised neuroblastoma patients older
than 12 months at diagnosis with International Neuroblastoma
Staging System (INSS) stage 4 tumors (irrespective of MYCN status)
or with INSS stages 2 and 3 tumors with MYCN amplification and
patients younger than 12 months with INSS stages 2–4 tumors
with MYCN amplification. The non-high-risk subgroup comprised
of all other patients. To this purpose, Mann–Whitney tests were
run on the 10 datasets for the 59 normalized biomarker genes.
Both the fold-change values as the �log10 transformed p-values
were compared among the methods.

Finally, we studied the effect of the curve analysis method on
patient classification performance. For this purpose, a 59-gene
expression signature was built using 20 training samples (10
high-risk patients that died of disease and 10 low-risk patients
with atleast 36 months event-free follow-up) using the Predic-
tion Analysis of Microarrays (PAM) method as previously de-
scribed [11]. The performance of the classifiers generated in
the 10 different (imputed) datasets was evaluated using receiver
operating characteristic (ROC) area under the curve (AUC) analy-
ses using only the patients with an event (death or relapse/pro-
gression) or with at least 36 months of follow-up (281 patients
in total).
Data-processing and statistical analysis was performed using
the R program v2.14.1 with the packages MCRestimate and ROCR
(http://bioconductor.org/).

2.3.2. Performance analysis
For each of the 63 genes in the biomarker dataset (excluding

AluSq) a concentration series from 150,000 to 15 DNA copies was
measured in triplicate. The raw fluorescence data were analyzed
by each of the curve analysis methods. The observed target quan-
tities were used to compare the performance indicators such as
precision, bias, resolution and linearity.

All analysis steps were also performed on target quantities that
were calculated with the original Cq values and the PCR efficiency
value derived from the standard curve based on these Cq values
(method: Standard-Cq).

The performance analysis was carried out per analysis method.
The calculation of the different performance indicators is illus-
trated in Fig. 1.

1. The data were scaled to set the highest input and its mean out-
put both to 1. This step removed the different measurement
scales used by the analysis methods.

2. The fold difference between the mean observed target quantity
of the highest and that of the lowest input was calculated. The
expected value for this ratio is 10,000; any deviation indicates
bias.

3. The scaled input and F0 data were then log-transformed (base
10) which ensures that every concentration will have the same
weight in the following calculations. This is required because
qPCR results should be valid for the whole range of inputs.

4. The within-triplicate variance was calculated and summed for
the 5 concentrations. The expected value per gene is the same
for all analysis methods because they all analyzed the same
fluorescence data. The observed variances are thus a measure
for the precision of the method; systematic differences in vari-
ance indicate differences in reproducibility.

5. The variance calculated in step 4 was compared to the variance
that is observed when the target quantities were calculated
with a conventional standard curve and Cq analysis (method
Standard-Cq). The resulting ratio between variances shows
whether the analysis method leads to increased or reduced var-
iation compared to the conventional analysis.

6. A linear regression analysis of log(output) on log(input) was
performed and the 95% CI around the regression line was con-
structed. The width of this interval was converted into a fold-
deviation from the regression line and the geometric mean for

http://bioconductor.org/
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the 5 inputs was calculated. This average fold-deviation is a
measure for the fold-difference that deviates significantly from
the regression line and is thus a measure for the resolution of
the method (lower is better).

7. After linear regression on the log-transformed data the residual
variation around the regression line can be split into the devia-
tion of the triplicate data points around the mean F0 per concen-
tration (within-triplicate variance, step 4) and the deviation of
those means from the regression line. The latter variance can
be considered a measure for the linearity of the input–output
relation.

When the analysis methods perform similarly there should be
no preferred order between methods in the ranking of the analyzed
performance indicators per gene. The non-parametric Friedman
test was used to test this null hypothesis per indicator. In case of
rejection of the null hypothesis a multiple comparison between
methods was carried out to determine which (groups of) methods
performed differently [45].
A

B

D

Fig. 2. Comparison of the results of the biomarker analysis. This analysis was done on th
genes measured in 366 tissue samples. (A) Number of missing values (out of a total of 59 �
different curve analysis methods (Note: exclusion of target AluSq, as LRE-Emax and Cy0 di
Whitney test in which the normalized expression of the 59 biomarker genes are compar
between brackets indicates number of non-significant genes (p > 0.05). (C) The mean di
(blue) in high-risk vs. low-risk for the different methods. Methods are ordered by largest
on the biomarker dataset among the tested curve analysis methods (AUC = area under th
survival).
The same performance indicators were determined, if applica-
ble, for the three technical data sets. Additionally, for the competi-
mer set, the observed PCR efficiency values were compared to the
expected efficiency that can be calculated from the competimer
percentage and the observed efficiency without competimer:
Eexpected = 1 + (Eobserved � 1) � (100�%competimer)/100. To com-
pare the variability in performance of the analysis methods in han-
dling those technical datasets, an F-test between variances was
applied per indicator and the results were used to determine sub-
sets of methods with similar variance.
3. Results

3.1. Comparison of the results of the analysis of the biomarker set

The different curve analysis methods generated datasets with
different numbers of missing values, as summarized in Fig. 2A.
Missing values are due to expression below limit of detection, or
C

e entire biomarker dataset including the 59 genes of interest as well as 4 reference
366 = 21,594 normalized measurements) generated in the biomarker dataset by the

d not have any result for this gene). (B) The mean of the �log10(p) values of a Mann–
ed in neuroblastoma tumors from high-risk versus non-high-risk patients. Number
fferences (log10 scale) of the genes lower expressed (orange) and higher expressed
average difference. (D) Comparison of the patient classification performance based
e curve, SENS = sensitivity, SPEC = specificity, OS = overall survival, EFS = event free



Table 2
Analysis of performance parameters per method. For each method, the mean rank (averaged over the 63 genes) is given for each of the performance indicators bias, linearity,
precision, and resolution. Between parentheses is the rank of the methods’ performance per indicator; the methods are sorted based on the average of these ranks. The Friedman
test shows subsets of methods for which there is no evidence that they perform differently when all indicators are considered.

Method Bias Linearity Precision Resolution Mean rank Friedman test subsets

Cy0 1.98 (2) 2.73 (1) 3.13 (2) 2.71 (2) 1.75
LinRegPCR 6.54 (6) 3.57 (2) 2.51 (1) 2.63 (1) 2.5
Standard-Cq 1.92 (1) 3.84 (3) 3.71 (3) 3.59 (3) 2.5
PCR-Miner 5.98 (5) 4.13 (4) 4.43 4) 4.17 (4) 4.25
MAK2 5.02 (3) 4.63 (5) 4.79 (5) 4.71 (5) 4.5
LRE-E100 5.27 (4) 4.79 (6) 5.10 (6) 4.95 (6) 5.5
5PSM 8.97 (11) 6.40 (7) 6.27 (7) 6.51 (7) 8.0
DART 8.43 (10 7.98 (8) 7.95 (8) 8.17 (8) 8.5
FPLM 7.84 (9) 8.59 (9) 8.81 (9) 8.68 (9) 9.0
LRE-Emax 7.11 (8) 9.14 (10) 9.52 (10) 9.52 (10) 9.5
FPK-PCR 6.94 (7) 10.19 (11) 9.78 (11) 10.33 (11) 10.0
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the inability of the method to properly process the amplification
curve. Based on this comparison, the 5PSM method outperforms
the other methods, generating the lowest number of missing val-
ues in the biomarker dataset.

Next, we investigated the impact of the curve analysis method
on the significance of differential expression of the biomarker
genes on the basis of the p-values. In Fig. 2B, the mean of the
�log10(p) values of a Mann–Whitney test, comparing high-risk ver-
sus non-high-risk patients, is visualized. Overall, there is not much
difference between the methods, with 5PSM resulting in slightly
lower significance values. The variance for all methods is similar
(not shown). Also the mean expression differences (Fig. 2C) are
very similar among the methods, with MAK2 appearing to have
an overestimation of the magnitude of the over-expressed genes
in the high-risk group, and 5PSM an underestimation for the same
set of genes.

Finally, the effect of the curve analysis method on patient clas-
sification performance was investigated (Fig. 2D). The sensitivity
refers to the ability of the gene expression classifier to correctly
identify those patients that will die (overall survival) or relapse
(event-free survival). The specificity refers to the ability of the gene
expression classifier to correctly identify those patients that will
survive or show no relapse. The area under the (receiver operator)
curve (AUC) represents the overall accuracy of the classifier. The
classification results are quite similar among the methods. Overall
best classification performance was observed for the FPK-PCR
method.

3.2. Performance indicators based on the biomarker data set

For each of the performance indicators derived from the analy-
sis of the concentration series per gene, line graphs were prepared
to show the results per gene and method. Each of these line graphs
contains the result of the Friedman test and the subsets of similarly
performing methods. Table 2 summarizes the results of the Fried-
man tests for each of the performance indicators. A low mean rank
indicates better performance of that method. Box-and-whisker
plots were prepared to illustrate the distribution of each indicator
per method (Fig. 3).

3.2.1. Efficiency
The range of efficiency values per method shows that efficiency

values differ between genes in value as well as in variation (Fig. 4).
This variability is the sum of differences in efficiency between
genes and differences that result from the estimation method.
Therefore differences in variability between methods cannot be
interpreted. Apart from DART and FPLM, which have overlapping
distributions, all methods result in different median E values
(Fig. 3A). Some methods have a substantial number of efficiency
values that are above 2. For all methods the observed efficiency
values (Fig. 3) are significantly different from the values derived
from the conventional standard curve (Standard-Cq) or the stan-
dard curve approach based on Cy0 values (Cy0) which, for the 63
genes, both estimate a median efficiency of 1.95 (IQR: 1.92–1.97).
3.2.2. Bias
Bias is defined as the deviation of the observed values from the

expected values. The expected value for the ratio between the
mean F0 of highest and lowest input is 10,000. Fig. 3B and Supple-
mental Fig. S1 show that only the standard curve based methods
(Standard-Cq and Cy0) reach such observed ratios. However, this
does not mean that those methods are unbiased. Those two meth-
ods calculate the efficiency value from the slope of the relation be-
tween Cq (or Cy0) and the log(input). This efficiency value and the
same Cq or Cy0 values are then used to calculate F0. Claiming that
these methods are unbiased is thus the result of a circular
reasoning.

The other curve analysis methods are consistently positively or
negatively biased (Fig. 3B and the cumulative graph in Supplemen-
tal Fig. S2). The variation between genes makes that this bias will
not easily be canceled out by normalization with reference genes.
Methods that show a wide variation in bias between genes will
therefore suffer from variation in gene expression ratios.

The regression line fitted to the scaled and log-transformed in-
put and F0 data should have a slope of 1 when the method is unbi-
ased. Indeed, the graph of these slope values per gene and analysis
method (Supplemental Fig. S3) is very similar to that of the ratio of
the mean observed F0 for the highest and lowest input (Supple-
mental Fig. S1).
3.2.3. Precision
The concentration series was measured in triplicate and the

resulting fluorescence data were analyzed. Therefore, the variance
within these triplicates should be small, only reflecting random
variation in laboratory procedures and fluorescence measurement,
and this variance should be the same for every analysis method.
The resulting within-triplicate variance can be considered a mea-
sure for the precision of the analysis method (Fig. 3C and Supple-
mental Fig. S4). The within-triplicate variance is strongly
method-dependent. The Friedman test shows that the six methods
that show low variability (LinRegPCR, Cy0, Standard-Cq, PCR-
Miner, MAK2, and LRE-E100) form overlapping subsets of two or
three methods (Supplemental Fig. S4). The other methods show
up to 5 times as much within-triplicate variance.
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Fig. 3. Performance indicators per method. The performance indicator values determined from the concentration series included in the measurement of the 63 genes are
summarized in box-and-whisker plots. The boxes range from the 25th to the 75th percentile and are divided by the median; the whiskers are set at the 5th and 95th
percentile. (A) PCR efficiency. For LRE-E100 all values are 2; MAK2 does not determine PCR efficiency. No expected value can be defined. (B) Bias is determined as ratio of the
mean F0 value observed in the highest and the lowest input. The expected value is 10,000. (C) Precision or reproducibility is determined as the within-triplicate variance and
should have the same, low, value in all methods. (D) Increased or reduced variation compared to conventional standard curve–Cq analysis. Values below 1 indicate reduced
variance. (E) Resolution defined as the fold-chance that would result in the detection of a difference at a 5% significance level; lower is better. (F) Linearity is defined as the
variance due to the deviation of the mean of the observed triplicate F0 values from the regression line; lower is better. See Supplemental Fig. S1–S8 for the performance
indicator values per gene, the Friedman test results and subsets of similarly performing methods.
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3.2.4. Increased of reduced variance
The ratio of the within-triplicate variance of each method and

the variance resulting from the conventional standard curve de-
rived efficiency and Cq method (Standard-Cq in Fig. 3C) was calcu-
lated to show the increased or reduced variance for each method
compared to this conventional approach (Fig. 3D and Supplemental
Fig. S5). A ratio of 1 would mean that the method results in the
same variance as the conventional method; a value below 1 would
indicate that the method results in reduced variance whereas a va-
lue above 1 indicates increased variance. The results show that,
although all methods can reach the same or better precision for
some genes, only 3 methods, Cy0, LinRegPCR and PCR-Miner do
so for 50% of the genes; 5PSM, MAK2 and LRE-E100 reduce vari-
ance for 20% of the genes (Supplemental Fig. S6). FPK-PCR, FPLM,
DART and LRE-Emax display hardly any reduced variance and an
up to 30-fold increase instead.
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3.2.5. Resolution
The total variance around a linear regression line can be used to

construct the confidence interval (CI) of this line; data points out-
side the 95% CI are considered to deviate significantly from this
line. According to this reasoning an observation outside the 95%
CI of the regression line fitted to the concentration series would
be judged to be significantly different from the observed output.
By converting the width of the CI into fold-difference from the fit-
ted line, the detectable fold-difference was calculated per gene
which can be considered a measure for the resolution of the
method.

The resolution (Fig. 3E and Supplemental Fig. S7) varies per
method. The cumulative distribution plot (Fig. 5) shows for each
method which percentage of the observations reaches a specific
detectable difference. LinRegPCR and Cy0 form a first subset with
highest resolution followed by Standard-Cq, PCR-Miner, MAK2
and LRE-E100 that form overlapping subsets. With these 6 meth-
ods a 2-fold observed difference would be significant for about
75% of the genes. For most other methods the resolution lies be-
tween the 2 and 3-fold-difference. However, for FPK-PCR and
LRE-Emax a substantial fraction of the genes require at least a 4-
fold difference.

Note that this analysis only includes the technical variation of
the qPCR analysis. In a real biomarker expression study, additional
technical variation related to normalization and additional biolog-
ical variation will be the limiting factor in the resolution of the
method [46]. However, because the current comparison of analysis
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methods uses the same datasets for each method, the differences
shown in Fig. 3E can be used to compare the effect of the analysis
method on the this performance indicator.

3.2.6. Linearity
The distance between the mean of the observed F0 values per con-

centration and the expected value on the regression line is consid-
ered a measure for the linearity of the input–output relation
(Fig. 3F and Supplemental Fig. S8). A high value means that the
regression line does not fit the observed F0 values per concentration.
This linearity measure is related to the variance of F0 values, but a
high within-variance can occur together with a low deviation from
linearity when the F0 values are far apart but their mean is on the
regression line. The lowest values are observed for Cy0 and Lin-
RegPCR; the latter forms overlapping subsets with Standard-Cq,
PCR-Miner, MAK2 and LRE-E100 (Supplemental Fig. S8). Of the other
methods, only DART, FPLM and LRE-Emax show overlapping subsets.

Note that the within-triplicate variance and the variance due to
deviation from regression, together form the total variance around
the regression line which is a factor in the calculation of the corre-
lation coefficient. Although the latter is often used to judge linear-
ity, it does in fact only describe the fit of the line in terms of total
residual variation. The observed correlation coefficients (r) per
gene and method are shown in Supplemental Fig. S9.

3.3. Performance based on the technical datasets

3.3.1. 380-replicates set
The 380-replicates set was included in the comparison of curve

analysis methods to determine the precision of the analysis meth-
ods. Because all methods analyze the same fluorescence dataset,
with its small random technical variation, a difference in the distri-
bution of observed indicators is due to variation introduced by the
analysis method. The 380-replicates set could not be analyzed by
LRE-qPCR. The Cy0 method did generate a Cy0 value but could
not calculate an F0 value because no dilution series was present
to determine an efficiency value.

3.3.1.1. Efficiency. Individual PCR Efficiency values were deter-
mined by 6 methods. The observed efficiency values vary signifi-
cantly in median value as well as variability (Fig. 6A). DART and
FPLM show the same low variation in efficiency values.

Cq. To include the Cy0 method into the analysis of the 380-rep-
licates set, a graph was prepared to show the variance in Cq and
Cy0 values (Fig. 6B). The Cy0 values show the least variance, fol-
lowed by a subset including LinRegPCR, 5PSM and FPK-PCR.

3.3.1.2. Target quantity. The observed F0 values were scaled to set
the median to 1 which enabled the comparison of the F0 values that
were determined on different scales (Fig. 6C). The lowest variabil-
ity in F0 values was observed in PCR-Miner, followed by a subset of
LinRegPCR and MAK2; the other methods show significantly more
variance.

The analysis of the 380-replicates series shows that, in methods
that use efficiency values per reaction, the low variance in Cq val-
ues combined with the variance in efficiency values can lead to
high variance in F0 values. On the other hand, PCR-Miner and Lin-
RegPCR, with intermediate variance in Cq values, and using a mean
efficiency value, reach low variance in F0 values.

3.3.2. 94-replicates-per-4-point 10-fold dilution set
The 94-replicates-4-dilutions set was included to compare var-

iability but could also be used to determine other performance
indicators. Similar to the analysis of the concentration series in
the biomarker datasets, this dilution series with an extended
number of replication per concentration (n = 94) was used to
compare variation in efficiency values, bias, reproducibility, linear-
ity and resolution between methods.

3.3.2.1. Efficiency. The distribution of individual efficiency values,
determined per reaction, is available for 6 methods (Fig. 6D).
Although the methods differ with respect to the median efficiency
value, all methods show a narrow distribution. The lowest variance
is observed in FPK-PCR and FPLM, with significantly increasing var-
iance in the other methods.

3.3.2.2. Target quantity: bias, linearity and precision.. F0 values in the
94-replicates-4-dilutions set were determined by 8 analysis meth-
ods (Fig. 6E). The variance in F0 values is lowest in LinRegPCR and
increases significantly for all other methods; DART and 5PSM show
similar high variance. The deviation of the mean F0 from the ex-
pected value (Fig. 6E; horizontal lines) shows systematically posi-
tive or negative bias per analysis method. The least bias is observed
in Cy0, PCR-Miner, LinRegPCR and MAK2 (Fig. 6F); FPK-PCR dis-
plays a strong underestimation of F0 values whereas 5PSM shows
a strong overestimation.

The methods with the highest precision reach the highest reso-
lution (Fig. 6F). However, despite its high variance, DART displays
good linearity; the mean values per dilution are as close to the
regression line as those of LinRegPCR. Supplemental Fig. S10 shows
the log(input) versus log(F0) graph per method which includes all 4
times 94 data points. The graphs clearly illustrate the differences in
bias, precision and linearity.

3.3.3. Competimer dataset
The competimer dataset was included to compare the degree to

which the different methods can handle (known) variations in effi-
ciency values. This approach to manipulate the amplification effi-
ciency is artificial; in field samples inhibitors are more likely to
interact with the polymerase. However, competitive primer bind-
ing is currently the only way to change PCR efficiency in a predict-
able way.

The methods differed strongly in the number of resulting miss-
ing values (Supplemental Table S1), ranging from 1 (MAK2) to 34
(FPLM and FPK-PCR) (from a total of 126 reactions; 21 observations
for each DNA dilution, 18 for each competimer concentration). Of
note, missing values occurred in the ‘early’ amplification curves
with high DNA input and un-inhibited PCR efficiency. When primer
competition lowered the efficiency value most methods were able
to handle the displaced amplification curves.

3.3.3.1. Efficiency. The variance in the observed efficiency values
depended on the analysis method and the competimer percentage
(Fig. 7A) with lowest variances in LinRegPCR and DART. Most
methods show more variable efficiency values when more compe-
timer is present. The ratio between observed and expected effi-
ciency depends on the analysis method, competimer percentage
and DNA input (Fig. 8). No method showed the expected ratio of
1. For all methods, the observed efficiency was too low and this
deficit increased with increasing competimer percentage, leading
to decreasing ratios for almost every method and cDNA input.

3.3.3.2. Target quantity. Because of the missing values in the high-
est DNA inputs for some methods the analysis of the performance
indicators using the observed F0 values is restricted to the DNA in-
puts of 4 ng/ll and lower. The mean observed F0 value for the DNA
input of 4 ng/ll was set to 1 and transformed to log (base 10). To
illustrate the variance and bias per method the correlation coeffi-
cient and slope of the regression line are shown in Fig. 7B. For these
scaled and log-transformed data a slope of close to 1 indicates ‘no
bias’ which is the case for most methods except MAK2. The
variation in bias increases with decreasing correlation coefficient.
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For further specification the variance was calculated per DNA input
and competimer percentage (Supplemental Fig. S13). These results
show a large variance in FPLM, 5PSM, DART and FPK-PCR and lower
variation in LinRegPCR, MAK2 and PCR-Miner. Note, however, that
with respect to the mean F0 per cDNA MAK2 shows a large varia-
tion in low cDNA inputs because its bias is dependent on the com-
petimer percentage (Supplemental Fig. S12).

The log(input)-log(F0) plots (Supplemental Fig. S11) show a
clear difference in linearity and reproducibility between methods.
The results obtained for different competimer percentages are
combined in these graphs. Some methods (LinRegPCR and PCR-
Miner) show non-linearity (underestimating the highest input).
MAK2 shows separation between competimer percentages result-
ing in a series of diverging lines.

The log(competimer percentage)-log(F0) plot (Supplemental
Fig. S12) should show a horizontal line for each input concentra-
tion. For some methods this configuration is observed for part of
the input concentrations. However, most methods perform worse
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for the lowest and highest inputs. MAK2 shows a downward trend
with increasing competimer concentration for every input.

4. General discussion and conclusions

Ten different curve analysis methods were applied to a large
biomarker dataset as well as three unpublished technical datasets
to determine their performance. All methods were applied by their
original developers and with the latest implementation of the algo-
rithms. Performance in the biomarker dataset was compared with
respect to the number of missing values, differences in single gene
expression level between high and low risk groups and the ability
to classify the patient population into known risk groups based on
a 59 multi-gene transcript signature. Additionally, the concentra-
tions series of all 63 genes included in this set, as well as the tech-
nical datasets were used to determine bias, reproducibility,
linearity and resolution.
When it comes to patient classification accuracy and signifi-
cance and magnitude of differential expression, all tested methods
perform relatively similar. This is in great part due to the fact that
results are normalized using multiple stably expressed reference
genes and that results are either averaged across a large set of 59
biomarkers, or the result of classification using a multi-gene signa-
ture of 59 genes. As such, variable or suboptimal results for specific
genes may be compensated by normalization or averaging across
different genes. This is encouraging news and indicates that the
chosen curve analysis method may not have great impact on rela-
tive quantification accuracy.

The performance comparison shows that for each indicator
there are large differences between genes. This illustrates that a
large number of targets or datasets are required to really appreci-
ate the performance of a given curve analysis method. The cur-
rently used datasets are made available to allow future tests and
comparisons (http://qPCRDataMethods.hfrc.nl).

Overall, methods that use one efficiency value per gene perform
better than methods that calculate F0 with an efficiency value per
reaction. A notable exception is MAK2, a method that does not de-
pend on calculation of an efficiency value. From a mathematical
perspective, this result is expected as variance in efficiency is prop-
agated more severely than variance in Cq values. Hence, similar
variance in efficiency and Cq values will result in greater variance
of the F0 quantities for the former (Supplemental Fig. S14).

4.1. Comments of original developers

4.1.1. CAmpER: DART and FPLM
Given that DART and FPLM are the oldest approaches used in

this comparison, both being initially published in 2003, the perfor-
mance of both methods is surprisingly good, although they are
clearly outperformed by more recent approaches. In the analysis
of the biomarker dataset both DART and FPLM show results com-
parable to the other approaches. In the analysis of the concentra-
tion series of this data the variance of calculated efficiencies is
quite low, but both approaches show an overall too high variance
and therefore are prone to add bias. One reason is the use of static
Fq values, as these are, to a certain degree, arbitrary and thus add
bias to the calculation. A second reason is the use of single sample
efficiencies, which seem to be inferior to mean efficiencies for rep-
licates as used in LinRegPCR or PCR Miner. These two issues may be
addressed in future CAmpER versions.

4.1.2. Mak2
MAK2. quantification of qPCR data is an a curve analysis method

that does not assume constant amplification efficiency per gene,
yet performs as well as the methods that make this assumption.
While other model-fitting methods employ empirical models (such
as a sigmoidal or exponential), used because they appear to have
the same shape as qPCR data, the MAK2 model is derived from
the molecular mechanism of the low temperature step of the poly-
merase chain reaction. Only a mechanistic model could be used to
accurately infer behavior in early qPCR cycles, where qPCR signal is
dominated by noise, from behavior observed when qPCR signal is
measurable. It is therefore not surprising that MAK2 quantification
outperformed the empirical model-fitting methods evaluated.

Theoretical analysis of the polymerase chain reaction, from
which MAK2 was derived, reveals that amplification efficiency is
not constant throughout PCR. The amplification efficiency of a
given cycle of PCR is determined by competition between the
annealing of primer to its target and the reannealing of comple-
mentary DNA strands. As target DNA concentration builds up,
amplification efficiency declines. The efficiency that can be ob-
tained from a Cq standard curve is an average efficiency that works
reasonably well for quantification when PCR is assumed to follow

http://qPCRDataMethods.hfrc.nl
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exponential behavior. The development of the MAK2 model is sig-
nificant because MAK2 quantification liberates qPCR users from
reliance on amplification efficiencies derived from Cq standard
curves.

While MAK2 quantification provides reliable estimates of target
DNA concentration in a sample under normal qPCR conditions,
MAK2 quantification does not reliably quantify target concentra-
tion for qPCR assays with competimers. This is because competi-
mer assays violate one of the assumptions of the MAK2 model:
the assumption that primer concentration can be assumed con-
stant, due to the overwhelming abundance of primers, throughout
the exponential phase of qPCR. Competimers, which compete for
binding sites with primers, cause increasing inhibition with each
PCR cycle because primers are consumed during PCR while com-
petimers are not, so that competimers increase in concentration
relative to primer concentration. Competimers thus accelerate
the decline in amplification efficiency over that which occurs un-
der normal PCR conditions. To accurately quantify competimer
data using the MAK2 model, the model would need to be modified
in order to take real-time primer and competimer concentrations
into account.
4.1.3. FPK-PCR
The development of the FPK-PCR approach focused on improved

estimation of PCR efficiency as it evolves over the amplification cy-
cles. Results from the competimer dataset indeed confirm that this
approach is highly suitable for detecting kinetic outliers (inhibi-
tion) and that its elevated efficiency estimates are not precluding
their use in comparing reactions. The performance of FPK-PCR in
the analysis of the biomarker data further illustrates its potential
as a valuable tool for qPCR data analysis. Upon inspection, in-
creased variability of the FPK-PCR results in the other datasets is
associated with imprecise estimation of the initial number of tar-
get copies, a parameter outside the focus of estimation in our ori-
ginal development. Current implementation relies heavily on the
assumption that all changes in reaction fluorescence are due to
the amplification process. Any alternative process that adds varia-
tion to the final observed fluorescence (i.e. plateau variability)
therefore translates into additional variation of these F0 estimates.
This explains why the FPK-PCR performs poorly in terms of vari-
ance while the bias is on target. An advanced F0 estimation method
capable of discounting the extra source of variation is under devel-
opment as part of a planned update of the FPK-PCR algorithm.
4.1.4. LinRegPCR
Because LinRegPCR uses a baseline estimation that is aimed at

reconstructing an exponential phase in which the data points are
on a straight line, the PCR efficiencies derived from these data
points are less variable [38]. Using the mean efficiency per ampli-
con further reduces the variance. The performance of LinRegPCR
shows that, at least till the start of the plateau phase the assump-
tion that the PCR efficiency is constant is not violated by the ex-
pected decrease due to limiting reaction conditions. The
determination of the start of the plateau phase enables the use of
data points in the late exponential phase which avoids ground
phase noise. The large number of missing values in the biomarker
dataset is partly due to the fact that LinRegPCR assigns a default
missing value to reactions that do not show amplification or do
not reach the plateau. The interface should be extended with an
option to enable the imputation of a large Cq value. The strong
non-linear behavior in the competimer dataset, when all inputs
are considered, is mostly due to the very early appearance of these
amplification curves. Because LinRegPCR does not use the ground
phase cycles for baseline estimation it can estimate a baseline for
such early curves. However, on the cost of a biased F0 value.
4.1.5. LRE qPCR
LRE qPCR originated from the recognition that amplification

efficiency progressively decreases during PCR amplification, and
that this loss is directly proportional to the mass of amplicon
DNA present at the beginning of each cycle performed. In addition
to refuting the exponential nature of PCR amplification [27], the
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application of optical calibration allows absolute quantification to
be conducted without the need to construct target-specific stan-
dard curves [47,48]. Development of an open source program that
automates LRE qPCR [42] further provides the ability to conduct
large-scale absolute quantification with little or no user interven-
tion. While absolute quantification was not a consideration in this
study, it has substantive implications, particularly for gene expres-
sion profiling, in that, among other attributes, it generates univer-
sally comparable data, an ability that is difficult to achieve using
conventional qPCR methodologies [11]. In addition to the perfor-
mance evaluation conducted in this study, earlier studies have
demonstrated that LRE qPCR has the ability to routinely generate
absolute accuracies of ±15–25% and has the ability to maintain
accuracy down to a single target molecule [47,48], capabilities that
may not be evident in this study due to the inherent limitations of
relative quantification.

4.1.6. Cy0
The Cy0 value has been defined as the intersection point be-

tween the abscissa axis and the tangent of the inflection point of
the Richards curve obtained by the non-linear regression of raw
data. Indeed, the shapes of amplification curves in qPCR range from
a perfect sigmoidal to a strongly asymmetric shape, for example in
presence of inhibitors [49]. More simply, the Cy0 method is a
threshold-based method like Ct but with the key difference that
the threshold value is dynamic and depends on amplification ki-
netic and possibly it should compensate for small variations among
the samples to be compared. This is a method in which the stability
and reliability of a standard curve approach is combined with a fit-
ting procedure to overcome the key problem of PCR efficiency
determination in real-time PCR nucleic acid quantification. Cy0
values were calculated using a web interface (http://www.cy0-
method.org) specifically developed by the authors for the analysis
in the current paper. The data reported herein show that the Cy0
method is a valid alternative to the Standard-Cq method for obtain-
ing reliable and precise nucleic acid quantification even when
amplification efficiency differs slightly between reactions.

4.1.7. 5-parameter sigmoidal model (5PSM)
The five-parameter model has an additional parameter that can

account for asymmetrical structures in qPCR curves, twisting the
fitted curve around the point of inflection and delivering signifi-
cantly better sigmoidal fits to the curve. This might be the reason
that this method delivers the lowest number of missing values
(Fig. 2A). However, improving the fit of the curve by adjusting
the asymmetry parameter also affects other parameters of the
curve such as the second derivative maximum and the slope. This
results in relatively low efficiency values (Figs. 3A, 6A and D). Even
more, the increased fitting performance (sensitivity) in the expo-
nential region results in a relative high variability in efficiency esti-
mation in this region, which essentially results in increased bias
and variability in the estimation of F0 and delivers a relatively poor
performance in a dilution experiment setup.

4.1.8. PCR Miner
Similar to the LinRegPCR method, PCR Miner also implemented

additional pre-evaluation functions in software to automatically
exclude the samples for efficiency estimation with bad exponential
phase (not fitting exponential model at all), not reaching plateau
(too little input or too less total cycles), or amplification happens
too early (too much input). The benefits of this strategy are that
it results in more reliable averaged efficiency (per gene) and good
F0 estimation since all used individual efficiencies are only from
the typical complete PCR curve, although on the cost of larger
number of missing values. For those excluded samples, refining
the experiment (e.g. DNA inputs, total cycle number) is
recommended. For the PCR competimer test, since only a small
number (�8) of available points within exponential phase can be
used for individual efficiency calculation, variation in efficiencies
from only triplicate samples is very likely to result in a consider-
able effect on F0 because any error in the measured efficiencies will
be exponentially magnified. Using more replicates (n P 6) to calcu-
late the mean of the efficiency within each competition group to
acquire a comparable F0 is advised.

4.2. Overall conclusions

A large scale and systematic analysis of amplification curve
analysis methods with respect to their bias, precision, linearity,
resolution and impact on transcriptional biomarker identification
is currently lacking in the literature. Here we provide an analytical
framework that enables assessment of multiple qPCR curve analy-
sis method performances using testable hypotheses.

Large differences are noticeable among methods, targets, and
samples. While we describe trends and rank methods with respect
to the various performance indicators, we cannot explain all obser-
vations. It is clear that methods that use reaction-specific PCR effi-
ciencies generally perform less accurate, due to higher sample
specific variability, compared to methods that average the effi-
ciency across all reactions per target gene. However, we have no
clear idea what other factors contribute to differential perfor-
mance. There appears to be a trend that methods that model more
parameters are generally more imprecise, but this observation is
confounded by the way efficiency is handled.

The strengths of this study are the large number of tested curve
analysis methods, the use of both real clinical samples and techni-
cal performance datasets, the inclusion of reactions with predict-
ably lower PCR efficiencies, and the use of different instruments
and PCR mixes. The limitations of the study are that most assays
are of relatively high quality in terms of efficiency, sensitivity,
and specificity. This may render the conclusions of the study less
representative when data is coming from suboptimal assays having
low PCR efficiencies and high variations. Another limitation is that
this study has not included samples that are spread across runs, so
potential run dependent bias and inter-run variability are not ad-
dressed. This is relevant as some methods use run dependent set-
tings, the validity of which was not tested here.

Based on the results and experiences gained from this study, we
provide a few recommendations for future studies in this field.
Even if this study included 2 different qPCR instruments and 3 dif-
ferent PCR mixes, this is not nearly representative and future stud-
ies should include more instances, in order to better assess the
robustness and general applicability of the analysis method. Partic-
ularly, datasets with lower fluorescence dynamics based on probe
detection chemistries should be included as only SYBR Green I
datasets were tested here. Another recommendation that we may
provide is that novel analysis methods or re-assessments of old
methods should indicate in more detail what type of data (instru-
ment, PCR mix, detection chemistry, number of assays) was used to
develop and validate the method. This may help assessment of po-
tential robustness of the method and give pointers to users outside
the tested ranges. The provided analytical framework in this study
should certainly help the evaluation of these future studies and
make results comparable with ours.

Finally, it was not the aim of this study to acclaim one particular
curve analysis method with best overall performance. Further-
more, choice of one method may depend on the set goals of the
quantification study whereby one performance indicator should
deserve more weight. Nevertheless, we believe accuracy is gener-
ally more important than precision because imprecision can be
overcome by running more replicates. We hope the current study
may help users to select the ideal method for their studies and

http://www.cy0method.org
http://www.cy0method.org
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developers to modify and improve their methods with testable
hypotheses.
5. Datasets

The datasets used in this study are made available (http://
qPCRDataMethods.hfrc.nl).

An additional compilation of 25 published datasets acquired
with different qPCR platforms and chemistries that are useful in
testing novel methods and algorithms can be obtained from
http://www.dr-spiess.de/qpcR/datasets.html. These datasets have
been preformatted into Excel files and a link to the original refer-
ences is given.
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Glossary

Raw fluorescence data: observed fluorochrome dependent fluorescence, corrected
for technical background but not for fluorescence baseline.

Baseline-corrected data: amplification dependent fluorescence; fluorescence data
corrected for fluorescence that is independent of amplification.

E or PCR efficiency: amplification efficiency defined as the fold increase per cycle
and thus ranging from 1 to 2.

Cq or quantification cycle: fractional number of cycles needed to reach the fluores-
cence threshold. Cq is also known as Cp or Ct but the use of those terms is dis-
couraged by the MIQE guidelines.

Fq or quantification fluorescence threshold: threshold set to determine the Cq value.
F0: fluorescence associated with the target quantity or starting concentration of the

DNA-of-interest, expressed in arbitrary fluorescence units.
NTC: no template control.
Reaction: individual reaction unit, corresponds to one well in a PCR run.
SDM: cycle at which the second derivative of the fluorescence values reaches its

maximum.
Sample or tissue: biological material in which target nucleic acid levels have to be

determined. A tissue can be measured in different reactions to measure dif-
ferent targets.

Target or amplicon: DNA of-interest, product of the PCR reaction specified by a pair
of primers.

http://qPCRDataMethods.hfrc.nl
http://qPCRDataMethods.hfrc.nl
http://www.dr-spiess.de/qpcR/datasets.html
http://dx.doi.org/10.1016/j.ymeth.2012.08.011
http://dx.doi.org/10.1016/j.ymeth.2012.08.011
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