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ABSTRACT: This article focuses on how to do mean-
ingful power calculations and sample-size determina-
tion for common study designs. There are 3 important
guiding principles. First, certain types of retrospective
power calculations should be avoided, because they add
no new information to an analysis. Second, effect size
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INTRODUCTION

Obtaining an appropriate sample size is an important
aspect of planning a statistical study. This article out-
lines some important concepts and techniques for this
purpose. Emphasis is on the power approach, which is
described in the next section. Some simple examples
are provided in the subsequent sections “One Propor-
tion” and “Two-Sample t-Test.” The section “What
Power Isn’t” discusses some common misconceptions
about power and effect size, and the section “Practical
Recommendations” suggests some practical issues and
the role and need for a pilot study. Finally, I give an
example of a relatively complex experimental plan, in
which there are multiple study goals and the pilot study
has a different experimental design than the planned
study.

POWER

Power is the probability of obtaining a statistically
significant result using a statistical test. It depends on
the significance level (α) of the test, the sample size
(n), the actual effect size (θ; on the original scale of
measurement), and possibly other “nuisance” parame-
ters such as the error SD, σ. Power is useful in several
ways for planning a future study. For example, it is
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should be specified on the actual scale of measurement,
not on a standardized scale. Third, rarely can a defini-
tive study be done without first doing a pilot study.
Some simple examples as well as a complex example
are given. Power calculations are illustrated using Java
applets developed by the author.

useful for deciding the sample size for a given effect
size of clinical importance or for evaluating the power
of a planned study when the sample size has been dic-
tated by budget constraints.

Actually calculating the power of a test often requires
the use of noncentral distributions such as the
noncentral t. These are complicated calculations, and,
hence, very few closed-form exact sample-size formulas
exist. Although there is an abundance of approximate
formulas, they are less and less necessary due to the
availability of computer software that can do the exact
noncentral calculations. Commercial standalone soft-
ware includes nQuery Advisor (http://www.statsol.ie/
nquery/nquery.htm) and PASS (http://www.ncss.com).
Many general-purpose statistical programs (e.g., SAS,
Minitab, and others) include sample-size procedures.
There also is a variety of freeware for sample-size com-
putation, such as Piface (Lenth, 2006). The latter are
Java applets on my own Web site, and they are used
for the illustrations in this article. When using software
products for sample size, one must be cautious, because
some programs still incorporate old (and sometimes
poor) approximations. The software mentioned above
all perform exact calculations.

ONE PROPORTION

One of the simplest statistical studies involves test-
ing a proportion. For example, one may plan to collect
data for a paired comparison of a treatment and a con-
trol condition and use the sign test to evaluate its sig-
nificance. To do the sign test, we simply go through
each pair and record a “+” if the treatment is greater
than the control, and a “−” otherwise. Under the null
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Figure 1. Piface implementation of the sign-test
example.

hypothesis that there is no difference between treat-
ment and control, we would expect one-half plusses and
one-half minuses. Accordingly, let p denote the proba-
bility that treatment is greater than control. The 2-
sided sign test can then be formulated as a test of the
null hypothesis, H0: p = ¹⁄₂, against the alternative, H1:
p ≠ ¹⁄₂. If p̂ denotes the observed proportion of plusses
based on n treatment-control pairs, then the normal
approximation yields the test statistic z = (p − 0.5)/

√0.5 × 0.5/n.

For a significance level of α = 0.05, we deem p̂ signifi-
cantly different from one-half (and, hence, the treat-
ment differs significantly from the control) if |z| > zα/2,
the critical value that cuts off a tail of area α/2 on the
standard normal distribution.

To plan an experiment that uses this test, we need
to specify what value of p would be regarded as clinically
significant; that is, how far must p deviate from one-
half in order to say that the treatment differs from the
control in a meaningful way? Suppose that we discuss
this matter with the research team, and they decide
that p = 0.6 or more or p = 0.4 or less constitutes a
clinically important difference from 0.5. The sample-
size problem is then to find the value of n such that the

power of the test is reasonably high (say 0.80 or 80%)
when p = 0.6. This is a simple matter using Piface, as
illustrated in Figure 1. Sliders are used to set the null
value of p = 0.5, the alternative of interest at p = 0.6,
and other graphical elements to set the significance
level, the 2-sided alternative, and to use the normal
approximation. Then selecting a power of 0.8 on the
bottom slider yields n ≈ 200.

TWO-SAMPLE t-TEST

In this section, I discuss planning a study involving
a 2-sample t-test to compare 2 means. We want to com-
pare 2 treatment conditions where data are collected
in independent samples, and it is decided that a 15%
difference (factor of 1.15) is clinically important. Often,
when a relative or percentage difference is considered,
it is appropriate to analyze the data on the logarithmic
scale. Moreover, a percentage difference of the original
values translates to a shift difference on the logarithmic
scale. Note that

ln 1.15 ≈ 0.14

and

ln 1/1.15 ≈ −0.14.

Thus, a 15% difference translates to a difference of
±0.14 on the natural-logarithm scale.

Unlike the sign-test scenario, we also need an esti-
mate of the error SD, σ. Suppose that pilot data (ana-
lyzed on the ln scale) suggest that σ ≈ 0.20. Suppose
also that the budget is just sufficient to collect 30 obser-
vations per condition. Figure 2 shows the Piface dialog
for this experiment. On the left-hand side, the values
σ = 0.2 and n = 30 are entered for both conditions. On
the right-hand side, we enter α = 0.05, that a 2-tailed
test is desired, and that the difference of interest is
0.14. We find that the power is about 0.76 and thus
that the budgeted sample size is reasonably adequate.
If the power had come out small, one could argue for a
bigger budget, or discover what difference of means
could be detected with n = 30 in each group, and reevalu-
ate whether the planned experiment is worth car-
rying out.

WHAT POWER ISN’T

Before proceeding to a more complex example, it is
worth discussing some common mistakes related to
power computations. First of all, power is not useful in
data analysis; it is useful for planning a future study.
One common, but misguided, practice when a result is
found nonsignificant is to compute the power retrospec-
tively; that is, the power based on all the observed infor-
mation (sample size, estimated effect, estimated error
SD, etc.). This can be shown to be merely a function of
the P-value of the test; when P < α, the retrospective



LenthE26

Figure 2. Piface interface for a 2-sample t-test.

power will be more than 50%, and when the P-value is
larger, the retrospective power becomes small. Thus, it
adds no new information to an analysis. A good discus-
sion of the reasons not to use retrospective power is
provided in Hoenig and Heisey (2001).

I would go beyond what Hoenig and Heisey (2001)
say and argue that the traditional way of computing
retrospective power is incorrect, because it ignores
available information. Given all the information (i.e.,
sample size, effect size, etc.) that goes into the calcula-
tion, one also can deduce the outcome of the statistical
test. If we use that information, the fallacy of retrospec-
tive power becomes clear. Because power is the proba-
bility of a significant result, the retrospective power
is equal to 1 if the result is significant, and 0 if it is
nonsignificant. It is certainly easier to compute that
way!

There are other ways that power calculations can be
used legitimately at the end of a study, namely, to de-
cide what is needed for a future, additional study that
yields enough data to serve one’s goals. That would
involve using what we have learned (e.g., the error SD)
and an effect size deemed of clinical importance (not
the observed effect size) to see how much additional
data are needed.

PRACTICAL RECOMMENDATIONS

I believe that the clinical effect size should be speci-
fied on the actual measurement scale, not relative to

σ, as was done with Cohen’s “small,” “medium,” and
“large” effects in popular use (Cohen, 1988). These “T-
shirt” effect sizes are based on surveys of the social
science literature, and using them simply gives you
the same sample size as is commonly used in large,
medium, and small published studies in the social sci-
ences. What appears to be a calculation is actually an
elaborate way to arrive at a foregone conclusion.

In practice, it can be difficult to have an effective
conversation about effect size. Often, a useful line of
inquiry for effect size can be approached like this: “How
different can these groups be and still be considered
practically the same?” As we saw in the t-test example,
we need an idea of σ for most common analyses. If you
truly have no idea of σ, then I would say that you are
not ready to do a definitive study and should first do a
pilot study to estimate it. Summarizing, there are 2
essential ingredients for power analysis:

1) Put science before statistics: This involves a
serious discussion of study goals and effects of clini-
cal importance, on the actual scale of mea-
surement.

2) Pilot study: For estimating σ and also to check to
make sure that the planned procedures actually
work.

The discipline of doing power calculations right is
ideal preparation for successful grant proposals or con-
vincing management of the worth of your proposed proj-
ect. For more discussion, see Lenth (2001).
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Figure 3. Interface to set up the split-plot model.

A SPLIT-PLOT EXPERIMENT

In this section, I illustrate how to approach power
calculations in a more complex experiment. The exam-
ple given is in semiconductor manufacturing. Although
this is not an animal science experiment, it is an effec-
tive example that is easy to understand, and the same
ideas apply to many other scenarios.

The structure of the planned experiment is as follows:
n lots of silicon wafers are to be produced. In each lot,
3 wafers will be used as experimental units, 1 for each
whole-wafer treatment. We measure oxide thickness,
in angstroms, (Å) at each of 3 fixed sites on each wafer.
Thus, the experimental design is a split-plot with lots as
blocks (a random factor) and 2 fixed factors, treatment
(whole-plot or between-wafer) and site (split-plot or
within-wafer). The model for the planned experiment
will have effects for lot, treatment, lot × treatment, site,
treatment × site, and error. Lot, lot × treatment, and
error are random effects, whereas treatment, site, and
treatment × site are fixed effects.

Table 1. The ANOVA for the semiconductor test de-
scribed in “A Split-Plot Experiment”

Sum of Mean
Source df squares square

Supplier 1 1,830.10 1,830.10
Lot (supplier) 6 7,195.20 1,199.20
Wafer (lot supplier) 16 1,922.67 120.17
Site 2 15.44 7.72
Source × site 2 58.33 29.17
Error 44 529.56 12.04

Our design goals are as follows. We want to be able
to have at least an 80% power of detecting the following
effects, based on tests with significance level 0.05:

• a difference of ±10 Å between 2 treatment means,
• a difference of ±5 Å between 2 site means, and
• a difference of ±15 Å between 2 treatment × site

means.
We have available data (Littell et al., 1996) that will

help us plan the experiment, but the past experiment
has a different design. These previous data comprise 8
lots of 3 wafers each, 4 lots using wafers from 1 supplier
and the other 4 using wafers from another supplier;
thus, there are 24 wafers altogether. On each wafer,
oxide thickness is measured at 3 fixed sites. In this
experiment, lots are nested in supplier, and wafers are
nested in lot. Site is crossed with the other factors. The
ANOVA is shown in Table 1.

Lot, wafer, and error are the 3 random effects. Equat-
ing these with their expected mean squares, we obtain
the following estimates of their respective variance
components: σ̂2

L = 119.9; σ̂2
W = 36.04; and σ̂2

E = 12.04.
The estimate σ̂L ≈ 12 is identified with the lot SD in
the planned split-plot experiment; the effect for wafer
(lot supplier) corresponds to the lot × treatment effect
in the planned experiment, because a combination of
lot and treatment identifies a single wafer. Finally, the
error SD in the 2 experiments correspond to within-
wafer variation. Thus, in spite of the designs being
different, there is a 1-to-1 correspondence between the
variance components in the past experiment and those
in the planned experiment.

Figure 3 shows the Piface dialogue window for speci-
fying an ANOVA model. The model is entered using
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Figure 4. Interface for treatment comparisons.

SAS-like notation, except the terms are delimited by +
signs. The beginning number of levels for each factor
and which factors are random also is specified. One has
the option of studying the powers of the ANOVA F-
tests, or t-tests of differences, or contrasts among factor
levels; we elect the latter.

Figure 4 shows the resulting interface for studying
the treatment difference. Factor levels are varied on
the left-hand panel, and variance components (actually
SD components) are entered on the middle panel; this
is where we specify the estimates σL = 11; σLT = 6; and
σE = 3.5. On the right-hand panel, we specify that we
want to compare levels of the treatment factor, enter
contrast coefficients of −1 and 1 (this specifies a differ-

Figure 5. Interface for treatment × site comparisons.

ence of 2 treatments), that we wish to consider the
power of Tukey’s honestly significant difference
method, and that the difference of interest is 10 Å.
When there are 10 lots, the power of this test is
about 0.82.

By selecting the site × treatment interaction, we get
the dialogue window in Figure 5. The SE of these com-
parisons differ depending on whether they are between
wafers or are within wafers; hence, the additional drop-
down list for restrictions on the comparison. We see
that with the same number of lots (i.e., 10), for the
power of the comparison of 2 treatments on the same
site (a between-wafer comparison), the power is very
high for the stated difference of interest of 15 Å. The
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power of a within-wafer comparison (2 sites with the
same treatment) is even greater.

Not shown are the results for the comparisons of
sites, but the power is sufficiently high when the true
difference is 5 Å, as per study goals. Hence, all of the
tests of interest have a power of at least 0.80 when we
use 10 lots.

SUMMARY AND CONCLUSIONS

Power calculations are for planning a statistical
study, not for analyzing existing data. Although these
calculations can be technically messy, this paper shows
that with the use of newer interactive software, we can
devote most of our attention to the scientific issues to
be addressed by a statistical study and perform “what-
if” style calculations of power to arrive at a reasonable
sample size. This does not mean it is an easy process,

just that it is technically fairly simple. The big challenge
is establishing communication between scientist(s) and
statistician(s) so that the goals of the study can be ade-
quately defined. In addition, a pilot study will often be
required before a definitive one can be planned.
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