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Abstract
Background: Genomic studies of complex tissues pose unique analytical challenges for
assessment of data quality, performance of statistical methods used for data extraction, and
detection of differentially expressed genes. Ideally, to assess the accuracy of gene expression
analysis methods, one needs a set of genes which are known to be differentially expressed in the
samples and which can be used as a "gold standard". We introduce the idea of using sex-
chromosome genes as an alternative to spiked-in control genes or simulations for assessment of
microarray data and analysis methods.

Results: Expression of sex-chromosome genes were used as true internal biological controls to
compare alternate probe-level data extraction algorithms (Microarray Suite 5.0 [MAS5.0], Model
Based Expression Index [MBEI] and Robust Multi-array Average [RMA]), to assess microarray data
quality and to establish some statistical guidelines for analyzing large-scale gene expression. These
approaches were implemented on a large new dataset of human brain samples. RMA-generated
gene expression values were markedly less variable and more reliable than MAS5.0 and MBEI-
derived values. A statistical technique controlling the false discovery rate was applied to adjust for
multiple testing, as an alternative to the Bonferroni method, and showed no evidence of false
negative results. Fourteen probesets, representing nine Y- and two X-chromosome linked genes,
displayed significant sex differences in brain prefrontal cortex gene expression.

Conclusion: In this study, we have demonstrated the use of sex genes as true biological internal
controls for genomic analysis of complex tissues, and suggested analytical guidelines for testing
alternate oligonucleotide microarray data extraction protocols and for adjusting multiple statistical
analysis of differentially expressed genes. Our results also provided evidence for sex differences in
gene expression in the brain prefrontal cortex, supporting the notion of a putative direct role of
sex-chromosome genes in differentiation and maintenance of sexual dimorphism of the central
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nervous system. Importantly, these analytical approaches are applicable to all microarray studies
that include male and female human or animal subjects.

Background
Recent developments in DNA microarrays permit a sys-
tematic investigation of gene involvement in biological
systems. The microarray technology relies on the quantifi-
cation of relative changes in RNA abundance between
samples, which are assumed a priori to represent changes
in function or activity of the cell. Accordingly, efforts in
genome sequencing and functional gene annotations are
shifting the focus to a more global view of biological
mechanisms. However, the large amount of data being
generated represents a considerable analytical challenge.
The typical structure of genomic datasets is complex and
evolving rapidly as new microarray analytical tools are
being developed and as genomic information gets period-
ically updated. Currently, a large proportion of the human
genome can be surveyed on a single microarray (~22,000
genes and expressed sequenced tags [ESTs]). On Affyme-
trix GeneChip™ oligonucleotide DNA microarray [1],
each gene is probed by 11 to 20 probe pairs (a probeset),
consisting of 25 base pairs long oligonucleotides corre-
sponding to different parts of the gene sequence. In a
probe pair, a perfect match (PM) oligonucleotide corre-
sponds to the exact gene sequence, while the mismatch
(MM) oligonucleotide differs from the PM by a single
base in the center of the sequence. The use of probe pair
redundancy to assess the expression level of a specific
transcript, improves the signal to noise ratio (efficiencies
of hybridization are averaged over multiple probes),
increases the accuracy of RNA quantification (removal of
outlier data) and reduces the rate of false positives. The
intensity information from these probes can be combined
in many ways to get an overall intensity measurement for
each gene, but there is currently no consensus as to which
approach yields more reliable results.

Alternative algorithms have been recently described to
extract and combine multiple probe level information,
however comparative studies assessing the reliability of
these different approaches have been limited to analysis
based on few synthetic internal control genes [2]. Once
gene expression levels have been determined, genomic
studies are confronted with issues of multiple statistical
testing of large number of genes (in the 10,000s) in much
smaller number of samples (from two to less than a hun-
dred in most cases). Typically, this issue has been circum-
vented by empirically setting statistical thresholds for
expression level, fold change between samples and signif-
icance levels, based on a small number of internal con-
trols that were added either during processing or before
hybridization of the samples onto microarrays.

In the context of a wider study of brain dysfunction in psy-
chiatric disorders, we have been collecting large-scale gene
expression profiles in two areas of the brain prefrontal
cortex from postmortem human samples, including male
and female samples. Thus, as an approach to evaluate the
specificity and sensitivity of microarray methods, we used
sex-chromosome genes as biological internal controls for
assessing microarray data extraction procedures and for
developing improved statistical analysis. Sexual dimor-
phism originates in the differential expression of X- and Y-
chromosome linked genes, mostly as a secondary conse-
quence of male or female gonadal hormone secretion.
However, not all Y-chromosome genes are restricted to
expression in the testes. For instance, several Y-chromo-
some genes are expressed in the male rodent [3] and
human [4] central nervous system. The function of these
genes outside the testes is unknown, but a certain level of
sexual dimorphism is manifested in the brain of male
mice in the total absence of testes [5].

In the central nervous system, sex differences have been
described in total brain size [6,7], in areas controlling
reproductive functions and sexual behavior [8], as well as
in structure [9], information processing [10], serotonin
concentration [11], synthesis [12] and receptor binding
[13]. Y-chromosomal dosage also affects behavioral phe-
notype across mouse strains [14] and in humans [15].
Most sexual dimorphisms originate not as a primary effect
of sex chromosome genes in individual tissues, but as a
secondary consequence of male or female gonadal hor-
mone secretion. However, evidence exists for cell autono-
mous realization of genetic sex in neurons, independently
of hormonal environment [16,17], and for direct contrib-
uting roles of Y-linked genes in structural features, such as
vasopressin-immunoreactive fibers in the lateral septum
[5].

Here, we compared three probe level data extraction algo-
rithms: Microarray Suite 5.0 (MAS5.0) Statistical Algo-
rithm from Affymetrix, Model Based Expression Index
(MBEI) of Li and Wong [18] and Robust Multi-array Aver-
age (RMA) of Irizarry et al. [2]. The three methods were
tested on our brain genomic dataset using transcripts from
Y-chromosome genes as internal controls for reliability
and sensitivity of signal detection. RMA-extracted gene
expression values were determined to be less variable and
more reliable than MAS5.0 and MBEI-derived values.
Expression values for males and females were compared
using t-tests with unequal variance, on a gene-by-gene
basis and separately for the two brain areas. This means
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that 22,283 tests were performed for each area and
method. The multiple testing problem was addressed by
using the Benjamini-Hochberg method for adjusting the
resulting p-values. This approach conserves the false dis-
covery rate (the expected proportion of errors among the
genes identified as differentially expressed) with no evi-
dence for obvious false negative results. Fourteen
probesets with significant sex effect were identified in
both brain areas, representing nine Y- and two X-chromo-
some linked genes (including redundant probesets).
These results provide supporting evidence for a putative
direct role of sex-chromosome genes, in addition to
gonadal hormones, in differentiation and maintenance of
sexual dimorphism of the central nervous system.

Results
Probe level data extraction: MAS5.0, MBEI and RMA 
comparison
We used an oligonucleotide DNA microarray approach
[1] to monitor large-scale gene expression profile in the
human prefrontal cortex, using dissected samples from
postmortem brains. Total RNA was extracted and proc-
essed for hybridization onto U133A oligonucleotide
microarrays (22,283 genes, expressed sequenced tags
[ESTs] and controls). Quality control parameters were
based on MAS5.0 extracted information, using thresholds
established across numerous microarray studies (see
methods). Seventy-five arrays from two brain areas (Brod-
mann area 9 [BA9], 39 arrays; BA47, 36 arrays) were
retained for further comparative analysis. Three different
methods were applied to estimate gene expression inten-
sities from the 11 to 16 probesets that represents each
gene or EST on the microarrays: Microarray Suite 5.0
(MAS5.0) Statistical Algorithm from Affymetrix, Model
Based Expression Index (MBEI [18]) and Robust Multi-
array Average (RMA, [2]). MAS5.0 detected on average
53% of the genes (~11,800 transcripts) as expressed in the
brain samples. MBEI systematically detected the presence
of an additional 8% of genes, while RMA does not provide
direct qualitative information about gene expression
status.

To assess the reliability of the respective probe-level data
analysis methods, we compared the variance in signal
detection for each gene across all arrays for the three alter-
native methods (Fig. 1). Irizarry et al. [2] showed that
RMA is less noisy at lower concentrations than the other
two methods. The coefficient of variation for each gene
(standard deviation as a percentage of the mean) was
computed and plotted as a function of the gene expression
level, measured by the percentage of samples in which the
gene was detected as present. Ideally, this function should
have a low constant value, because then the variability of
the log-transformed intensity measurements is approxi-
mately constant for all expression levels. Variability in

MAS5.0 signal intensity measurements was high for back-
ground detection (absent genes) and genes with low
expression levels, and decreased as signal intensity
increased, reaching a level of variation close to that of
MBEI and RMA for highly expressed genes (Fig. 1, top
curves). The RMA analysis detected gene expression inten-
sities with low variability, regardless of expression levels
(Fig. 1, bottom curves), while MBEI analysis results dis-
played intermediate variability (Fig. 1, Middle curves).
Results from all three methods were highly reproducible
between the two brain areas, as demonstrated by the
closeness of the curves corresponding to the two brain
areas for all three methods (Fig. 1).

The coefficient of variation as a measure of dispersion is
not robust to outliers; thus, two other measures were also
considered. A popular robust measure of dispersion is the
MAD (Median Absolute Deviation). We used MAD as a
proportion of the median as an alternative to the coeffi-
cient of variation and reached similar conclusions for the
comparison of the three methods (data not shown). A sec-
ond alternative to the coefficient of variation was
obtained by using trimmed means and variances (with
extreme observations on both ends of the scale removed)
and also lead to the conclusion that RMA extracted data
were less variable than data extracted with MAS5.0 or
MBEI (data not shown).

Next we investigated whether lower signal variability
obtained with the RMA probe-level data extraction
method was reflected in greater sensitivity to detect differ-
entially expressed genes between experimental groups. To
this end, array samples were divided into male (BA9, n =
29; BA47, n = 27) and female (BA9, n = 10; BA47, n = 9)
sample groups and Log2-transformed gene expression lev-
els (MAS5.0 and MBEI Log2 converted, RMA values) were
compared by t-test between both groups. Y-chromosome-
linked genes should only be detected in male samples and
were therefore considered true biological internal controls
for group comparisons. Out of 45 Y-chromosome
probesets on the U133A array, eleven of them yielded
consistent low p-values (less than 10E-7) with RMA
extracted values, against nine probesets or less with
MAS5.0 or MBEI (Table 1 and 2).

T-tests rely on the assumption of normality in the two
groups of the (log-transformed) gene expression. This
assumption can fail for some genes, and the use of the t-
tests can be especially questionable for low sample sizes.
In our case, the sample sizes were large enough for the
males, but there were relatively few females. Therefore, the
rank-based Wilcoxon test has also been run on all genes.
The performance of the MAS5.0 and MBEI methods on
the Y-chromosome genes improved with the Wilcoxon
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method, although RMA still found the highest number of
Y-linked probesets in BA9.

Thus, based on statistical results obtained for biological
internal controls and on analysis of signal variability
between alternate probe-level data extraction algorithms,
RMA-extracted values were deemed superior to those
obtained using MBEI and MAS5.0. Log2-transformed-
RMA data was used exclusively for the rest of this study.

Testing for differences in sex-chromosome gene expression 
in prefrontal cortex
We used gene-by-gene t-tests with unequal variance to
compare average expression levels between males and

females. The results were then checked using the rank-
based Wilcoxon test, to discover differentially expressed
genes with non-normal distributions of the gene intensi-
ties. To adjust for multiple testing and establish the signif-
icance of the resulting p-values, we computed cut-off
values using the Benjamini-Hochberg technique of con-
trolling the false discovery rate. For independent test sta-
tistics, this method aims to guarantee that the proportion
of genes with non-significant differences that are detected
as being different (the false discovery rate), is below the
pre-established experiment-wise error rate of 5%. It has
also been shown to work well for gene microarray data,
where the test statistics are not independent [19]. At the
same time, the technique is somewhat less conservative

MAS5.0, MBEI and RMA signal variabilityFigure 1
MAS5.0, MBEI and RMA signal variability. The variability in signal intensity measurement obtained with three different 
probe-level data extraction methods is represented by the lowess curves of the coefficient of variation. The X-axis represent 
increasing signal intensities, as measured by the percentage of arrays on which this gene is detected as present (% present 
calls). Presence calls were obtained with MBEI (BA9, n = 39; BA47, n = 36). Note that curves for the two brain areas are very 
close to each other for all three methods.
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than using the Bonferroni adjustment for multiple testing
although the comparison is not well defined since the two
methods aim to control different criteria. Thirteen
probesets displayed significant differential expression in
both brain areas between males and females (i.e. p-values
below the false discovery rate threshold, Fig. 2A, Table 2),
representing eight Y-chromosome and two X-chromo-
some-linked genes. The gene UTY was also detected as dif-
ferentially expressed in BA47. The X-linked gene
PCDH11X was upregulated in male BA47 samples.
Twenty additional genes (including some autosomal
genes) survived the false discovery rate screen in BA9 or
BA47, but with overall low fold changes (1.20 ± 0.06,
Mean ± SD) and higher p-values, probably representing a
combination of weak effects and lower analytical limit
under present conditions. Additional analysis of signal
intensities for 30 estrogen-related probesets revealed no
discernable trends towards male-female differential gene
expression. Individual examination of 31 additional Y-
linked probesets also indicated a complete absence of spe-
cific signal for these genes (Fig. 2.B), thus confirming that
the false discovery rate threshold, as applied here, was not
excessively conservative and detected all trends towards
sex differences. In comparison, Bonferroni's correction
confirmed 30% fewer comparisons in the top 15 X-Y-
related probesets in both brain areas combined, and only
53% of all probesets that survived the false discovery rate
screen. Assessing the distribution of the sex t-test p-values
suggested that additional genes may show weak tenden-
cies towards sex effect (Fig. 3). The p-values from the
original groups show a trend toward smaller p-values than
expected from a uniform distribution for the low p-values.
The size of this shift indicates a possibility that additional
genes may be weakly affected by sex, however our sample
size was too low to detect them with the adjustment

method used in this report. Alternatively, the shift in the
p-value distribution could have been introduced by the
dependence of the test statistics and effects of data
normalization.

Changes in gene expression were confirmed by real-time
quantitative PCR, as an alternative experimental platform
to measure RNA levels. As expected, real-time PCR analy-
sis for selected X- and Y-linked genes systematically
generated much higher fold changes (Table 2, see Meth-
ods and Discussion).

Effect of other demographic and experimental variables 
on gene expression
The integrity of mRNA samples was assessed by gel elec-
trophoresis and by the ratio of hybridization signal that is
obtained between the 3' and 5' mRNA ends for control
genes [3'/5' ratio for Actin and GAPDH on oligonucle-
otide microarrays (see Methods and Table 3)]. A ratio
close to one indicates low or absent mRNA damage. Over-
all, the samples retained for analysis displayed low 3'/5'
ratios (Table 3). No correlation between sample variabil-
ity and brain pH or PMI was observed, indicating all
together a high RNA integrity for postmortem brain
samples.

The cohort of subjects was racially diverse (see Methods).
Gene-by-gene analysis of variance (ANOVA) was used to
seek differences in gene expression for the respective racial
groups (the sole Asian subject was excluded from this
analysis). The significance of the resulting p-values was
determined by using the Benjamini-Hochberg method
described for the sex effect. None of the race p-values were
significant at this threshold. To confirm that the negative
finding was not a result of a breakdown in the

Table 1: MAS, MBEI and RMA detection sensitivity for Y-chromosome-linked genes.

BA9 BA47

probe set MAS5 MBEI RMA MAS5 MBEI RMA

211149_at X
207246_at X X

204409_s_at X X X
207063_at X X X

205001_s_at X X X
206624_at X X X X

206700_s_at X X X X X
214983_at X X X X X
205000_at X X X X X X
201909_at X X X X X X
204410_at X X X X X X

"X" denotes p-values that passed the Benjamini-Hochberg false discovery rate screen (based on Log2-values). None of the other Y-chromosome-
linked probeset were significantly different between males and females.
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distributional assumptions of the ANOVA, the non-para-
metric Mann-Whitney test was also applied to all genes.
The resulting p-values were not significant. If any differ-
ences in gene expression were present between racial
groups, they may be too weak to be detected with our cur-
rent sample size.

Age is known to influence brain function and structure.
We will present our findings on the complex effects of
aging on gene expression in a separate report. For the pur-
pose of studying sex-related differences in gene expres-
sion, no statistical interactions were noted between
subject age and sex, therefore we do not address here the

Y-chromosome-linked probesets: male-female expression comparisonsFigure 2
Y-chromosome-linked probesets: male-female expression comparisons. RMA-based averaged values (± STDEV) are 
displayed. A) Probesets with significant differences in expression levels for male and female samples in BA9 and/or BA47. All 
male-female comparisons were statistically significant with the exception of #11 in BA9 and # 12 and 13 in BA47 (See also 
Table 2). Probesets are organized according to order of y-linked genes in Table 2. B) Selected Y-linked probesets without sex-
differences. All these genes were detected as ''absent'' by MAS5.0 or MBEI. Signal level represent background estimates. 
Probesets are: 1, 201909_at; 2, 204409_s_at; 3, 204410_at; 4, 205000_at; 5, 205001_s_at; 6, 206624_at; 7, 206700_s_at; 8, 
207063_at; 9, 207246_at; 10, 214983_at; 11, 211149_at; 12, 208067_x_at, 13, 211227_s_at; 14, 214983_at; 15, 217261_at; 16, 
217162_at; 17, 221179_at; 18, 211461_at; 19, 209596_at; 20, 210322_x_at; 21, 216376_x_at; 22, 216922_x_at; 23, 
211462_s_at; 24, 207909_x_at; 25, 207918_s_at; 26, 207912_s_at.
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effect of age in our comparison of male and female
groups.

Postmortem interval (PMI), representing the time elapsed
between death and brain collection, may affect gene
expression. As described in the Methods section, the effect
of PMI was studied on a gene-by-gene basis using three
different statistical models. The Pearson correlation coef-
ficient tested for linear correlation between gene expres-
sion intensity and PMI, the rank-based Spearman
correlation tested for any monotonic relationship, while
the analysis of variance, based on a binned version of the
PMI, tested for a more general relationship. The resulting
p-values were adjusted using the Benjamini-Hochberg
method. Only one gene was marginally correlated with

PMI, and in one of the two brain areas only. Probeset
220675_s interrogates the expression level of a putative
transcript coding for an unknown protein. Signal levels
were at background levels, therefore likely representing
the lower analytical threshold for PMI effect. No genes
with significant PMI effect on expression level were found
using the analysis of variance approach. Individual exam-
ination of genes that may be directly affected by PMI, such
as early immediate genes or genes coding for heat shock
proteins, did not reveal any trends or correlation with
PMI.

The pH of brain tissue is affected by agonal and postmor-
tem conditions, and in turn may affect RNA levels and
integrity [20]. The effect of brain tissue pH on gene expres-

Distribution of the t-tests p-values for sex differences or random group labelsFigure 3
Distribution of the t-tests p-values for sex differences or random group labels. Distribution of the p-values from the 
t-tests comparing males and females. These p-values are slightly lower than expected from a uniform distribution, representing 
a mixture distribution of p-values from differentially expressed and not affected genes.
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sion was studied in our samples by the Pearson correla-
tion coefficient, the Spearman (rank-based) correlation
and the analysis of variance approach. When comparing
the resulting p-values to the Benjamini-Hochberg thresh-
olds, no significant changes were found. No correlations
were detected between pH and PMI (ρ = 0.13, p-value =
0.4), or pH and age (ρ = -0.14, p-value = 0.4), PMI, but age
and PMI were positively correlated in this sample (ρ = 0.4,
p-value= 0.01). When these variables were entered as cov-
ariates in an analysis of covariance model with gene
expression as response and gender as the group effect, the
resulting adjusted p-values for PMI and pH were not sig-
nificant compared to the Benjamini-Hochberg thresholds.

Discussion
In this study, we assessed the reliability of probe-level data
extraction methods for GeneChip™ oligonucleotide
microarrays by comparing the variance in signal detection
for each gene across all arrays for three alternative meth-
ods (MAS5.0, MBEI and RMA) and found that RMA
extracted data displayed low and constant variability in
expression values (as expressed by the coefficient of varia-
tion), regardless of overall signal intensities. In
comparison, MAS5.0 and MBEI generated higher signal
variability for low expressed genes and similar detection
sensitivity at higher expression levels (Fig. 1). While it
may seem intuitive that low-expressed genes have lower
signal to background ratios, and should yield more varia-
ble intensity measurements, as seen with MAS5.0 (Fig. 1),

Table 2: Male-Female differentially expressed genes.

Probe Set GenBank Name Gene Chromosome Function a9 M/F a47 M/F RMA_Log2 RMA_Log2 Sybr-PCR

Genes identified in both brain areas.

FC M/F FC

201909_ BC010286 ribosomal protein S4, 
Y-linked

RPS4Y Yp11.3 protein 
biosynthesis

8.9 10.8 2.42E-14 7.67E-11 >1700

204409_s_ BC005248 eukaryotic translation 
initiation factor 1A

EIF1AY Yq11.2 translation 
initiation

1.9 2.3 <1E-16 9.77E-13 >72

204410_ AF000987 eukaryotic translation 
initiation factor 1A

EIF1AY Yq11.2 translation 
initiation

1.6 1.7 4.09E-06 1.84E-09 >72

205000_ AF000984 DEAD/H (Asp-Glu-Ala-
Asp/His)box

DBY Yq11 RNA 
helicase

6.4 8.5 <1E-16 <1E-16 >96000

205001_s_ AF000985 DEAD/H (Asp-Glu-Ala-
Asp/His)box

DBY Yq11 RNA 
helicase

1.9 1.9 <1E-16 5.51E-07 >96000

206624_ Y13618 ubiquitin specific 
protease 9

USP9Y Yq11.2 deubiquitylat
ion

4.7 5.1 <1E-16 <1E-16

206700_s_ U52191 SMC (mouse) homolog SMCY Yq11 transcription 
factor

2.9 3.3 1.70E-07 6.48E-10 >5000

207063_ AF119903 hypothetical protein 
PRO2834

Yq11.2 unknown 1.3 1.5 4.17E-06 5.77E-10

207246_ M30607 zinc finger protein ZFY Yp11.3 transcription 
regulation

1.3 1.2 4.67E-08 8.57E-06

214983_ AL080135 hypothetical protein 
DFKZp434I143

Y unknown 1.9 2.1 6.13E-08 9.60E-08 >100,000

207703_ AB023168 KIAA0951 protein Xp22.3 unknown 2.5 2.7 2.25E-08 6.97E-07
214218_s_ AV699347 XIST XIST Xq13.2 X-gene 

inactivation
-6.4 -7.8 1.32E-07 4.23E-10 <-3400

221728_x_ AK025198 XIST XIST Xq13.2 X-gene 
inactivation

-12 -15 1.70E-08 4.49E-09 <-3400

Selected genes identified in BA9 or BA47 only.

FC

211149_ AF000994 ubiquitously transcribed 
tetratricopeptide rep

UTY Yq11 protein-
protein 
interaction

1.1 1.2 0.0148 8.35E-07 >67,000

210292_s_ AF332218 protocadherin 11 X-
linked

PCDH1
1X

Xq21.3 cell-cell 
recognition

1.5 1.8 0.0012 1.30E-08

211937_ NM_001417 eukaryotic translation 
initiation factor 4B

EIF4B 12q12 translation 
regulation

1.2 1.1 1.21E-05 0.0916

219737_s_ AI524125 protocadherin 9 PCDH9 13q cell-cell 
recognition

1.3 1.0 2.77E-05 0.4902

Bold denotes p-values that passed the Benjamini-Hochberg false discovery rate screen. M/F FC, male versus female fold change (see Methods); Sybr-
PCR, real-time PCR.
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it is important to remember that the numerical outputs
for signal intensity summate complex patterns of hybridi-
zation across numerous oligonucleotides, representing
both specific (PM) and non-specific (MM) signals, in
addition to local background signal from non-probe
surfaces. MBEI and RMA use probeset information across
several microarrays to determine specific signal from
background or non-specific hybridization, while MAS5.0
analyzes one array at a time. It is clear from these results,
that the multiple array approach represents an improve-
ment in lowering the variability in signal detection, to the
point where background variability becomes constant,
even in the case of negligible specific signal (see Fig. 1, 0%
presence versus 100% in RMA analysis). However, while
MBEI reduced the variability in probeset data extraction
over multiple arrays, when compared to MAS5.0, it is not
clear why its overall performance at detecting specific sig-
nals for Y-linked internal control genes decreased in com-
parison to both MAS5.0 and RMA algorithms (Table 1).

RMA data analysis seems to provide further benefit in reli-
ability of specific signal detection by uncoupling MM
probes from their respective PM, and by incorporating
them in their estimates of local background signal. These
results confirm reports of lower variability in signal detec-
tion by RMA, based on a few synthetic internal controls
[2], and extends the approach by using true biological
internal controls. While spiked-in genes would have the
advantage of being added at known concentrations, the
baseline expression of sex-chromosome genes in different
tissues is not known. Nevertheless sex genes offer the
advantage of being universal, systematic and practical,
while allowing the comparison of detection sensitivity for
analytical approaches across different experiments using
similar biological material. The good performance of
RMA in this particular dataset may also be due in part to
the comparatively large number of arrays (39 and 36
arrays for the two brain areas). When the number of arrays
is small, robust averaging may not work as well. Establish-
ing the groups of arrays to be extracted together is an

important step; the need to have a large number of arrays
per group has to be balanced with the requirement that
dramatically different arrays should not be averaged
together. In this study probe-level data from BA9 and
BA47 arrays were extracted separately.

The discussion of the variability of a measure, i.e. a signal
intensity, has to be coupled with the discussion of its bias.
Bias can be estimated in the case of spiked-in positive
control transcripts that are added to one of the sample sets
but not to the others as the averaged deviation from the
true value. In our case, however, the true gene intensities
are unknown. Measurements of transcript levels across
genes by alternate approaches (Real-time PCR, Northern
blot, in situ hybridization) are not absolute, as assays are
linear for particular gene products between different sam-
ples, but not necessarily across different genes that have
different sequences and hybridization efficiencies. Thus
we will have to rely on the evidence of the studies with
internal controls (2) to estimate that the RMA method is
comparable in terms of bias with the other two data
extraction methods.

Sensitivity of the three data extraction methods was eval-
uated on a low number of genes (45 Y-chromosome
probesets, 31 were determined to be absent, see Figure 2,
eleven were found to be differentially expressed using
RMA and t-tests). In this case, false negatives are hard to
define, since sex genes that are absent in most of the sam-
ples are not expected to be differentially expressed, while
the three data extraction methods also differ in their
present-absent calls (or lack of it, for RMA). False positives
could only be defined under the assumption that only X
and Y-chromosome genes are truly different for males and
females. Thus our findings as to the sensitivity and specif-
icity of the three methods are suggestive, but not a reliable
proof of superiority.

Parametric tests like the t-test and ANOVA rely on the
assumption of normality of the response variable, espe-

Table 3: Microarray quality control parameters.

RawQ Scale Factor Background % Present calls Actin 3'/5' ratio GAPDH 3'/5' ratio

BA9 Mean ± SEM 3.12 ± 0.13 1.12 ± 0.05 40.76 ± 3.41 52.4 ± 0.5 1.14 ± 0.03 0.96 ± 0.02
Max 4.97 2.14 94.17 57.1 1.91 1.28
min 1.95 0.71 16.04 45.4 0.87 0.83

BA47 Mean ± SEM 2.82 ± 0.11 1.21 ± 0.07 34.95 ± 2.69 53.5 ± 0.6 1.45 ± 0.09 1.10 ± 0.04
Max 4.49 2.32 81.07 58.7 3.26 1.61
min 1.76 0.57 13.65 44.9 0.95 0.82

Quality control parameters for brain samples microarrays from Brodman Area 9 (BA9, 39 arrays) and 47 (BA47, 36 arrays). Values were derived 
from MAS5.0 array analysis.
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cially for low sample sizes. Testing the distribution of the
intensities separately for ~22,000 genes is problematic.
Visual inspection of normal quantile plots for a random
sample of genes indicates that the assumption is violated
for a relatively low proportion of the genes. The obvious
solution is to use non-parametric tests (like the Wilcoxon
test for comparing two groups, or Mann-Whitney for
more than two groups). However, non-parametric tests
lose power compared to the parametric tests when the
assumptions hold. Thus we ran non-parametric tests in
addition, not instead, of the parametric tests, and in ques-
tionable cases (when a difference was detected by only
one method) inspected the distribution of the gene
intensity.

Genomic studies are confronted with issues of multiple
statistical testing of large number of genes in much
smaller number of samples. Multiple testing is known to
lead to high false rejection rates. Most studies involving
microarray data analysis have dealt with this problem
either by using arbitrary cut-off values for significance, or
by using the Bonferroni adjustment method, which can be
very conservative. Controlling the family-wise type I error
rate (the probability that one error is committed in the
family of hypotheses) is too stringent for the purpose of
gene discovery and can result in a severe loss of power.
Gene discovery can typically tolerate a small number of
false positives among a larger pool of selected genes. One
alternative is to conserve the expected proportion of false
rejections out of all rejections, the false discovery rate.
Controlling the false discovery rate has been investigated
in other medical research areas involving similar very
large datasets involving many comparisons, such as neu-
roimaging [21]. The Benjamini-Hochberg method that
was applied here is a simple way to control the FDR for
independent hypotheses, and has been used to address
the issue of multiple testing in microarray data analysis
[22,23]. Theoretically, one of the underlying assumptions
of this technique is that the test statistics used are statisti-
cally independent. More conservative methods can be
used when the hypotheses are not independent [24], how-
ever, it has been shown that the Benjamini-Hochberg
technique will control the FDR when applied to microar-
ray data [19,23] and our findings support that claim.

Using RMA-extracted gene intensity measurements and
controlling for multiple testing by the described method,
we identified several X- and Y-chromosome linked genes
that were differentially expressed between males and
females. The statistical methods applied here provided no
evidence for false negative results. There were no changes
in gene expression that correlated with the different race
subgroups, although the sample numbers were relatively
small with limited analytical power to detect minor differ-
ences. Importantly, we found no evidence for correlation

between transcript levels and/or integrity of RNA and two
experimental variables that are often taken into consider-
ation for pairing human brain samples: postmortem
interval (PMI) and brain pH.

Differences in transcript levels for X- and Y-linked genes
ranged between 1.2 and 15 fold, as opposed to a theoret-
ical infinite fold (present in males and absent in females),
reflecting the presence of background hybridization signal
for genes that are not expressed (i.e. Y-linked genes in
female samples). Real-time PCR analysis for selected
genes systematically generated much higher fold changes
(Table 2), (see Methods). These observations highlight
technical issues relating to probeset selection, redundancy
and hybridization efficiency on oligonucleotide microar-
rays. Typically, different probesets for the same gene can
yield very different signal levels, reflecting either splice-
variants, cross-hybridization or low hybridization effi-
ciency for some oligonucleotides. Based on Y-chromo-
some internal controls for which biological differences
between sexes are known, detection by any probeset
seems to be sufficient to identify differential expression.
Furthermore, while there is usually an overall good
correlation between quantitative changes in expression
levels obtained by microarray and real-time PCR (data not
shown), these results indicate that background signal
and/or less efficient probesets can greatly attenuate real
fold changes between samples for genes that are either
absent and/or expressed at very low levels in at least one
sample. A clear analytical implication of these observa-
tions is that selecting differentially expressed genes based
on arbitrary cut-off values for fold change will be less reli-
able than statistical thresholds.

Pre- and postmortem factors have been suggested to influ-
ence pH, mRNA quality and quantity in human brains
[20]. The pH values that are reported in this study repre-
sent storage conditions and it is not known whether they
may have varied at the time of brain collection. However,
more systematic analyses by Harrison et al. [20] and John-
ston et al. [25] indicated that the major factors affecting
brain pH may be pre-morbid agonal conditions and
longer PMI values than applicable to the samples used in
this study. With this regard, it is important to note that all
subjects in this study died rapidly, therefore precluding
any effect of prolonged agonal state on pH values and
overall gene expression. The pH values reported here are
similar to values reported in studies of samples involving
rapid death (less than 1 hour) and short PMI (less than 36
hours) [20,25], and lower than values reported in other
microarray studies [26]. The reason for differences in
reported pH values may reflect methodological differ-
ences in assays. Importantly, there was no evidence for an
influence of pH on either total RNA levels or individual
gene transcripts, nor was there any correlation between
Page 10 of 15
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pH and PMI or age. Furthermore, PMI did not have any
significant effect on any signal intensities for the ~22,000
genes investigated in this study. This absence of PMI effect
in our samples does not rule out changes in gene expres-
sion in the early period following death. It is possible that
the timeframe of the study (PMI= 17.2 hours ± 1.2, Mean
± SD) masked any early effect of postmortem conditions
on gene expression.

For X-chromosome genes, transcripts are maintained at
male levels by inactivation of a copy on one of the two X-
chromosomes in females. This function is directly medi-
ated by the XIST gene RNA [27]. Accordingly, XIST tran-
script levels were significantly upregulated in female
samples (Table 2), with background levels in male sam-
ples. Only one other X-chromosome gene was differen-
tially expressed between sexes in our study, while detected
changes in autosomal genes were sparse, of marginal
amplitude and only in one area at a time. Only two to
three genes (MAPK14, EIF4B and PCDH9, Table 2) dem-
onstrated tendencies towards sex-related differential
expression. The prefrontal cortex exhibits very little sexual
dimorphism, therefore it is not known whether this pau-
city of detection of autosomal changes in the prefrontal
cortex of human subjects is representative of other brain
areas and non-gonadal tissue. It is also possible that
changes restricted to few cells between sexes may be
diluted and considerably reduced in the pooling of cellu-
lar subtypes in our gray matter samples.

The SRY gene encodes the master-switch for the develop-
ment of the testis, but has also been detected at very low
levels in human male brains, including frontal cortex [4].
In this study, SRY gene expression in male prefrontal
cortex was either absent or below the detection level of
DNA microarrays. Y-linked genes detected as expressed in
the prefrontal cortex (Table 2) map to the part of the Y-
chromosome that does not crossover with the X-chromo-
some [28]. Genes of this non-recombinant part of the Y-
chromosome (NRY) are not present in females, but have
functional homologues on the X-chromosome with simi-
lar but non-identical protein isoforms [28]. NRY genes
identified in this study can be broadly divided in two
functional groups: general cellular function (RPS4Y,
USP9Y, UTY) or control of transcription-translation
(DBY, SMCY, ZFY, EIF4Y). Several of these genes have
been previously described as expressed in developing and
adult brain tissue, either in rodents (SMCY, UTY, DBY [3])
or in humans (ZFY [4]). The fact that brain expression lev-
els for most genes of the non-recombinant part of the Y-
chromosome are independent of testicular secretions and
levels of androgens [3] provides further support for a
putative independent role for these genes products on
brain function. However, an important consideration to
keep in mind is that functional differences would have to

rely on translation of these transcripts, for which no evi-
dence is being provided. Y-linked genes are typically
expressed at low levels and respective protein levels have
often been difficult to monitor, even in testis [4].

Conclusions
An important issue in the analysis of gene expression data
is the assessment of i) the data quality, ii) the performance
of algorithms used for data extraction, and iii) the statisti-
cal methods to detect differentially expressed genes. In
this study, we have demonstrated the use of sex genes as
true biological internal controls to address some of these
issues. Based on reliability of detection of sex-differences
in sex chromosome gene expression, we have described
analytical methods for testing differential gene expression
in complex tissues, using robust RMA-extracted signal
intensities from oligonucleotide microarrays and by cor-
recting for multiple testing by controlling the false discov-
ery rate. Our results also emphasized the importance of
statistical threshold to detect differential expression, as
opposed to arbitrary cut-off values. Under our experimen-
tal conditions, gene expression profiles in the brain were
found to be robust and mostly independent of several
demographic and experimental variables, such as race,
brain pH and PMI. A consistent sex effect was identified
on a set of genes corresponding mostly to sex-chromo-
somes. These results provide further evidence for a direct
role of sex-chromosome genes in the differentiation and
maintenance of brain sexual dimorphism. Taken together,
our results suggest analytical guidelines for testing micro-
array data extraction and for adjusting multiple statistical
analysis of differentially expressed genes. Importantly,
these analytical approaches are applicable to all microar-
ray studies that include male and female human or ani-
mal subjects.

Methods
Clinical samples
Samples were obtained from the Brain collection of the
Human Neurobiology Core, Sylvio Conte Center for the
Neuroscience of Mental Disorders, at the New York State
Psychiatric Institute. There were 31 males and 10 females
in the sample cohort. Caucasians represent 71%, African-
Americans 20%, Hispanics 7% and Asians 2%. As a group,
males did not differ significantly from females on age
(44.9 ± 20.6 years vs. 46.5 ± 42.2 years, Mean ± STDEV),
race (71% Caucasian vs. 72% Caucasian), postmortem
delay (18.6 ± 6.2 hours vs. 16.6 ± 8.8 hours, Mean ±
STDEV) or brain pH (6.56 ± 0.21; subjects, 6.49 ± 0.20,
Mean ± STDEV). Therefore, for the purpose of this study,
male and female samples were combined in two separate
groups. All subjects were psychiatrically characterized by
psychological autopsies and underwent a toxicological
screen. 22 subjects committed suicide (psychological
autopsies indicated that 19 of them had a lifetime diagno-
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sis of major depression) and 19 died of causes other than
suicide (psychological autopsies found them free of
psychopathology). In this study probe-level data from
BA9 and BA47 arrays were extracted separately, but arrays
from the control and subject groups were extracted
together. The validity of this step is based on the assump-
tion that the psychiatric subject and the control groups
differ at most in the expression level of a limited number
of genes. The details of our finding on the comparison of
these two groups will be published separately.

Microarray samples
Brodmann areas 9 (BA9) and 47 (BA47) were dissected
from frozen brain sections that had been transferred from
-80C to -20C for two hours. Brodmann areas were identi-
fied using gyral and sulcal landmarks, cytoarchitecture
and a standardized coronal atlas (Robert Perry and
Edward Bird, personal communication), as previously
described [29]. Blocks were sectioned with a cryostat at
200 µm (-20°C). Meninges and white matter were
removed as much as possible during sectioning, before
collection into microtubes. 200 µm thick sections were
collected in microtubes at -20C. Total RNA was extracted
by the TRIZOL method (Invitrogen, Carlsbad, CA) and
cleaned with Rneasy microcolumns (QIAGEN GmbH,
Germany). The RNA purity and integrity were assessed by
optical densitometry, gel electrophoresis and subsequent
array parameters. Microarray samples were prepared
according to the Affymetrix protocol http://www.affyme
trix.com/support/. In brief, 10 µg of total RNA was
reverse-transcribed and converted into double-stranded
cDNA. A biotinylated complementary RNA (cRNA) was
then transcribed in vivo, using an RNA polymerase T7
promoter site which had been introduced during the
reverse-transcription of RNA into cDNA. After fragmenta-
tion in pieces of 50 to 200 bases long, 15 µg of labeled
cRNA sample was hybridized onto oligonucleotide
U133A microarrays, using standard protocols with the
Affymetrix microarray oven and fluidics station at the
Columbia University Genome Center. A high-resolution
image of the hybridization pattern on the probe array was
obtained by laser scanning, and fluorescence intensity
data was automatically stored in a raw file. To reduce the
influence of technical variability, samples were randomly
distributed at all experimental steps to avoid any simulta-
neous processing of related samples. Microarray quality
control parameters were as follows: noise (RawQ) less
than 5, background signal less than 100 (250 targeted
intensity for array scaling), consistent number of genes
detected as present across arrays, consistent scale factors,
Actin and GAPDH 3'/5' signal ratios less than 3 and con-
sistent detection of BioB and BioC hybridization spiked
controls. Based on these criteria, 39 arrays were retained
for further analysis in BA9 and 36 arrays in BA47 (Table
3).

Real-time PCR
Small PCR products (100–200 base-pairs) were amplified
in quadruplets on an Opticon real-time PCR machine (MJ
Research, Waltham, MA), using universal PCR conditions
(65C to 59C touch-down, followed by 35 cycles [15"at
95C, 10" at 59C and 10" at 72C]). 150 pg of cDNA was
amplified in 20 µl reactions [0.3X Sybr-green, 3 mM
MgCl2, 200 µM dNTPs, 200 µM primers, 0.5 unit Plati-
num Taq DNA polymerase (Invitrogen, Carlsbad, CA)].
Primer-dimers were assessed by amplifying primers with-
out cDNA. Primers were retained if they produced no
primer-dimers or non-specific signal only after 35 cycles.
Results were calculated as relative intensity compared to
actin. The last cycle was retained as baseline for compari-
son with "absent" genes.

Gene intensity measures (Probe level data extraction)
MAS5.0, MBEI and RMA represent different ways to com-
bine probe-level data from oligonucleotide microarrays.
Software for all three methods can be found in the R pack-
age affy that can be downloaded from the Bioconductor
project website http://www.bioconductor.org. All three
methods model the gene intensity as a measure of the
"specific binding": the difference between the binding
intensity of the perfect match probe and a measure of the
non-specific and/or background binding. MAS5.0 and
MBEI use mismatch (MM) probe intensities as a relative
measure of non-specific binding while RMA uses a local
background signal computed using summaries of these
mismatch values as non-specific binding. All three meth-
ods are based on an explicit statistical model of gene
intensity as a function of probe-level intensities and
include some sort of mechanism for removing or down-
weighting outlier probes and/or arrays, so that a few out-
standing values will not exercise a disproportionate
influence on the gene intensity measure. Hence, all three
can be called robust statistical methods. However, there
are important differences in the form of the model and the
underlying assumptions that are worth mentioning here.

Let us denote the intensities for each probe by PMijn and
MMijn, where n represents the probe sets or genes, i repre-
sents the array or sample, and j the probe pair number.

For probe set n on array i, the intensity measure (signal)
as given by the MAS5.0 software is computed on the log
scale as the weighted average of the probe-level signals

log(Signalijn) = Tukey Biweight{log(PMijn - CTijn)}, j = 1, ...,
J,  [1]

where the CTijn are the mismatch MMijn values wherever
they are smaller than the corresponding perfect match
intensities and a modified background value otherwise.
The weighting function used is the Tukey Biweight [30]
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which removes/downweights outlier probe intensities so
they will not distort the signal. MAS5.0 extracts data from
each array separately and independently, so data from dif-
ferent arrays do not influence each other. The other two
methods use data from multiple arrays to estimate the
signal.

The MBEI, described in [18], for each probe set n, from 1
to N, on array i is the maximum likelihood estimate of the
θin (after outlier removal) from the equation

PMijn - MMijn = θin * φjn + εijn, i = 1, ..., I; j = 1, ..., J  [2]

where φjn represent probe-specific affinities and the εijns
are assumed to be independent normally distributed
errors for each n. The model uses data from different
arrays (denoted by i in the above formula) for the same
probe set and iteratively estimates the array-specific
probe-set intensity and the probe-affinity parameters in
subsequent steps, until convergence of the parameter esti-
mates is achieved. It assumes a multiplicative model on
the original scale for the two sets of parameters, with nor-
mal errors. Outlier arrays or probe sets are tagged and dis-
carded from the analysis.

The RMA log scale expression level for probe set n, n = 1,
..., N, is the estimate of µin from the linear additive model

Yijn = µin + αjn + εijn, i = 1, ..., I; j = 1, ..., J,  [3]

where αjn are probe affinity effects that sum up to 0 for
each probe set n, εijns are assumed to be independent
normally distributed errors, and Yijn are the background
adjusted, normalized and log transformed PM intensities.
See [2] for details. As in the case of the MBEI method, this
equation uses data from I microarrays and J probes for
each probe set. Note that the probe-level MM intensities
in this approach are used only indirectly, for calculating
the background intensity. Instead of maximum likeli-
hood, a robust method (median polish, see [30]) is used
to obtain the parameter estimates, to diminish the influ-
ence of outlier probes/arrays.

From a theoretical point of view the MAS5.0 method is
very different from the other two since it uses data from a
single array. The other two methods differ mainly in the
scale they use and the estimation method. For datasets
with a small number of arrays, "averaging" over arrays is
generally not going to lead to much improvement in the
gene intensity measure, but for larger datasets, theoreti-
cally at least, the MBEI and RMA methods might yield
more reliable results. The quality of the intensity measure
in this case will depend on the estimation method, but
also on the heterogeneity of the samples. Using arrays
with very different gene expression levels in the same

model might lead to biased intensity measures. To avoid
this pitfall, arrays with samples from BA9 and BA47 were
submitted separately to the MBEI and RMA probe-level
extraction programs.

Statistical Testing
After obtaining the gene intensity measures, the next step
was to study the effect of sex, race, postmortem delay and
pH on gene expression levels. Since the co-regulation
between genes is a very complex issue, we used a gene-by-
gene statistical testing instead of a multivariate analysis.
The log-transformed values were used instead of the raw
intensities because of the variance stabilizing effect of this
transformation. The most widely used statistical method
for detecting differential gene expression between two
groups is gene-by-gene t-test. The standard two-sample t-
test assumes that the intensities in the two groups are nor-
mally distributed and have equal variances. In case of the
Y chromosome genes, which are not present in one of the
groups, the assumption of equal variances is clearly vio-
lated. Thus, a modification, the t-test for unequal vari-
ances was used for all genes. This t-test still relies on the
normal distribution of the (log transformed) gene expres-
sion. That assumption can be violated for some genes.
Thus a more prudent approach is to use a rank-based
method like the Wilcoxon test for comparing the two gen-
der groups. When the data is normally distributed, this
can lead to a loss in power compared to the t-test.

There are three racial groups among the subject in the
study (Caucasians, African Americans and Hispanics, the
sole Asian subject was removed from this part of the anal-
ysis). To test for the effect of race on gene expression,
gene-by-gene analysis of variance (ANOVA) with three
groups was used. This method tests for any difference
between the group averages. If a significant p-value is
found, so called post-hoc tests (Scheffe's, Tukey's etc.) can
be computed to ascertain the nature of this difference,
without affecting the experiment-wise Type I error level.
Non-parametric analysis of variance tests (Mann-Whit-
ney) have also been performed to ascertain that the nega-
tive results were not due to a breakdown in the normal
distribution assumption.

There are several ways to test for the effect of a continuous
variable, like postmortem delay, on gene expression,
depending on the form of the hypothesized relationship.
Linear correlation was tested using the Pearson correla-
tion coefficient. To test for a relationship of a more gen-
eral form, the continuous variable can be binned into
three or more categories and an analysis of variance, as
described above, can be performed. For example, post-
mortem delay values were divided into 4 bins (less than
15 hours, 15–18, 18–22 and above 22 hours), and then
ANOVA was used to detect differences among the four
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groups. Spearman's rank-based correlation coefficient and
the non-parametric Mann-Whitney test for the compari-
son of the four groups have also been computed.

Finally, all of the continuous covariates (age, PMI, pH)
were included in an analysis of covariance model with
gene expression as the response variable and gender as the
group effect, to compute adjusted p-values for the covari-
ates. When the covariates are correlated, the adjusted p-
values can differ from the unadjusted values.

Performing a separate test for each gene raises the prob-
lem of adjusting the resulting p-values for multiple test-
ing. A conservative adjustment method (Bonferroni's
adjustment) is to divide the experiment-wise Type I error
level (α) by the number of hypotheses tested (N = 22,283)
and use that as the cut-off for significant p-values. This
method will usually result in very few, if any, significant
p-values. Another alternative is to use cut-offs given by a
linear step-up technique first proposed by Benjamini and
Hochberg [31] for the control of the False Discovery Rate.

When testing N independent null hypotheses H1, H2, ...,
HN with p-values P1, P2, ..., PN the false discovery rate rejec-
tion rule Rα guarantees that the expected proportion of
rejected null hypotheses that are actually true (denoted by
FDR) stays at or below α.

Let iα = max{i: P(i) ≤ (i/N) * α }, where P(i) are the ordered
p-values. Then, under independence of the hypotheses Hi,
the rejection rule given by

Rα = {Reject all Hi with Pi ≤ P(iα)} satisfies FDR(Rα) ≤ α
 [4]

The cut-off value for the lowest p-value is the Bonferroni
cut-off, but for the subsequent p-values it is higher by a
multiple equal to the order of the p-value.

Test statistics for gene microarray data are unlikely to be
independent from each other because of gene coregula-
tion. For positively dependent test statistics, a modified
version of the technique was developed [20]. Measure-
ment error of microarray data tends to have a positive
dependence structure, but gene coregulation need not
result in positive dependency, thus it is not clear if the sec-
ond approach is more valid than the first one in the
present case. However, in [19] the "naïve" Benjamini-
Hochberg approach is compared on simulated gene
microarray data to three other, more complicated tech-
niques designed to control the FDR, and the authors con-
clude that the Benjamini-Hochberg approach does
control the FDR on the desired level. Their second conclu-
sion is that it retains more power than the traditional
adjusting procedures, although it has less power than the

more complicated, resampling-based techniques the
paper describes. As it often happens in statistical testing,
more power can be obtained at the expense of computa-
tional simplicity.
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